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Background
Many conventional drugs exhibit poor pharmacokinetics, limited bioavailability and 
a high toxicity, all of which restrain their use. To overcome these issues and improve 
the therapeutic indexes of the drug, the emergent fields of nanotechnology and nano-
medicine have made significant progress in detection, diagnosis and treatment of sev-
eral diseases at clinical level (Li et al. 2014; Yingchoncharoen et al. 2016; Signorell et al. 
2018). In fact, thanks to nanoparticles and liposomes, it has been possible to decrease the 
toxicity and improve the pharmacokinetics parameters, such as distribution, increased 
circulation time, targeted controlled release, increased intracellular concentration, and 
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enhanced solubility and stability of drugs in the organism (Medina-Alarcón et al. 2017; 
Ventola 2017). All these advantages have been reached by using drug delivery systems 
with 1–100  nm diameter nanoparticles, where a large surface leads to an increase in 
cellular interactions and multiple alterations of surface properties (Ud Din et al. 2017; 
Senapati et  al. 2018; Gonda et  al. 2019). Moreover, by co-delivering multiple drugs, 
treatments with NPs have also facilitated synergistic therapies and avoided drug resist-
ance (Casals et al. 2017). For example, in CPX-351, a liposomal formulation, cytarabine 
and daunorubicin are packed together at a 5:1 molar ratio within 100-nm-diameter 
liposomes (Gergis et al. 2013; Cortes et al. 2015; Lancet et al. 2014).

Liposomes were discovered by Alec D. Bangham in 1965 (Allen and Cullis 2013) and 
were the first approved class of therapeutic NPs for cancer treatment. They still represent 
a large proportion of clinical-stage nanotherapeutics (Shi et al. 2017; Bourquin et al. 2018) 
due to their biodegradable, biocompatible, non-toxic, and non-immunogenic composition 
(Bozzuto and Molinari 2015; Zamani et  al. 2018). The amphiphilic phospholipid bilayer 
of liposomes has close resemblance to the mammalian cell membrane, enabling efficient 
interactions between liposomes and cell membrane and subsequently effective cellular 
uptake (Gonda et al. 2019). In addition, liposomes may be added with ligands to increase 
efficiency and specifically target damaged cells, thus improving liposome pharmacokinet-
ics and their ability to pass through target membranes, reaching high concentrations inside 
cells while reducing toxicity and enhancing treatment efficacy (Li et al. 2014; Ud Din et al. 
2017; Zamani et al. 2018; Hussain et al. 2017; Lombardo et al. 2016; Fouladi et al. 2017; 
Maranhão et al. 2017; Miller et al. 2016). For instance, MM-302, an antibody–liposomal 
doxorubicin conjugate, specifically targets HER2 overexpressing cells (Miller et al. 2016). 
Liposome encapsulation may reduce drug clearance by the immune and renal systems, 
extending circulation time in the blood and increasing their availability (Bulbake et  al. 
2017). Another advantage of liposomes in their thermosensitive feature, i.e., an increase of 
temperature (to 40–41 °C) causes packing changes in the bilayer favoring the release of the 
encapsulated drug. These thermo-devices favor the specific release of a large amount of 
the cytotoxic agent to a heat-treated tumor site when using an external heat source, avoid-
ing damage to the surrounding normal tissue (Nardecchia et al. 2019).

The first nanosized liposomal product to obtain regulatory approval in the US was 
 Doxil®, which was approved in 1995 for the treatment of ovarian cancer and AIDS-
related Kaposi’s sarcoma. Later, in 1996 the US FDA approved  DaunoXome®, manufac-
tured by NeXstar Pharmaceuticals, for the delivery of daunorubicin to treat advanced 
HIV-associated Kaposi sarcoma. Subsequently, more products have become available for 
the treatment of cancer and different diseases (Bulbake et al. 2017).

The most commonly investigated nanoparticles are phospholipids-based carriers, 
micelles, polymeric nanoparticles based on poly(lactide-coglycolide) (PLGA), polybu-
tylcyanoacrylate, poly(isohexyl cyanoacrylate), poly(amine-co-ester), chitosan nano-
particles (Chaudhuri and Straubinger 2019; van Rijt et al. 2014), cellulose nanocrystals 
systems (Mohanta et al. 2019), viral vectors (Gomes et al. 2017), self-assemble proteins 
(Colton et  al. 2014), carbon nanotubes (Kaur et  al. 2019), dendrimers (Hudson 2001), 
core–shell and metallic NPs (Wu et al. 2008), Fig. 1. However, for nanomaterial-based 
therapeutics, liposomes have been the most successful formulation for clinical appli-
cation to date (Gonda et al. 2019), and the sterically stabilized liposomal formulations 
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currently dominate the clinical landscape with FDA-approved products (Chaudhuri and 
Straubinger 2019). The success of liposomes in clinics is based on their versatility and 
their characteristics, such as their structural similarity to mammalian cell membranes 
and their capability to encapsulate either hydrophobic or hydrophilic drugs (Gonda et al. 
2019), among the other features described above.

In recent years, many clinical trials using liposome as a drug delivery system to treat 
several diseases have been published. This review discusses the emerging research and 
clinical developments in liposome therapeutics, as well anoverview of the liposome 
characteristics and the distribution of liposomal clinical trials worldwide.

Liposomes: an overview
Liposomes are bilayer spherical vesicles composed by phospholipids and cholesterol 
that in water create at least one lipid bilayer surrounding an aqueous core, which may 
encapsulate both hydrophilic drugs (e.g.,  Doxil®, encapsulated doxorubicin in the aque-
ous core) and hydrophobic compounds (e.g.,  AmBisome®, trapped amphotericin B) 
immersed in the lamellae by Van der Waals forces (Senapati et  al. 2018; Gonda et  al. 
2019; Gao et al. 2018), see Fig. 2.

Fig. 1 Nanoparticles commonly used as drug delivery systems. a Liposomes: biomimetic structure, 
encapsulate hydrophobic and hydrophilic drugs. Schematic image done with  Adobe®  Photoshop® CS6. b 
Viral vector: schematic representation of viral adenovirus. From Gomes et al. (2017). c Self‑assembled proteins: 
ribbon diagram representing the structure of the ferritin protein. From Colton et al. (2014). d Polymeric 
nanoparticle [image from van Rijt et al. (2014)]. e Metallic nanoparticle: magnetic and non‑immunogenic 
sphere, rod or cage nanoparticles (schematic image done with Paint  3D®). f Single‑walled carbon nanotube: 
efficient drug‑loading capacity because of ultrahigh surface area. Diameter range from 0.4 to 2 nm for 
SWCN and 2–100 nm for MWCN. From Kaur et al. (2019). g Astruc’s 54‑ferrocene dendrimer. From Hudson 
(2001). h Polystyrene‑coated magnetic NPs with core/shell structure. Modified from Wu et al. (2008). i Micelle 
formulation as drug delivery system. Public domain
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Phospholipids are amphiphilic lipids that consist of a glycerol molecule bound to a 
phosphate group  (PO4

2−) and to two fatty acid chains that may be saturated or unsat-
urated (Pinot et  al. 2014). The phosphate has also an ester bound with an organic 
molecule, e.g., choline or ethanolamine (Monteiro et al. 2014) (Fig. 3). Phospholipids 
are key components and provide specific characteristics to liposomes, i.e., the way of 
encapsulating the compounds and the functionalization into the organism (Hussain 
et al. 2017). Since phospholipids are the main biological cell membrane components, 

Fig. 2 Schematic structure of a stable antibody–liposome encapsulating hydrophobic and hydrophilic drugs. 
Hydrophilic drugs like doxorubicin can be encapsulated in the aqueous compartment. Hydrophobic drugs 
like amphotericin B, paclitaxel, and docetaxel, can be encapsulated in the non‑polar compartment. Liposome 
size varies between 20 nm to several hundred microns. Pharmacokinetics depends directly of the size 
(schematic image done with  Adobe®  Photoshop® CS6)

Fig. 3 a Chemical structure of hydrogenated soybean phosphatidylcholine (HSPC), a phospholipid used in 
 Doxil®, the first approved liposomal nanoformulation. Brackets indicate the polar and non‑polar portions of 
the phospholipid. b Scheme of the membrane permeability of liposomes with unsaturated phospholipids. 
Blue figures represent charged compounds while orange ones have no charge: the circles represent the 
polar head of phospholipids; bars, the fatty acid chains; hexagons, hydrophobic drugs; and triangles, the 
hydrophilic drugs (schematic image done with  Adobe®  Photoshop® CS6)
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both liposomal and cell membranes can coexist during the release mechanism (Roth-
field 1971).

As we seen, liposome properties are affected not only by its composition, but also 
by size, surface charge, number of lamellae, rigidity of the bilayer, surface modification 
and method of preparation (Olusanya et al. 2018). For instance, the ammonium sulfate 
method would render a high concentration of amphipathic drugs, such as doxorubicin, 
similar to the pH gradient method for vincristine (Senapati et al. 2018). Another impor-
tant parameter for preparing self-aggregating amphiphiles such as surfactants, lipids and 
liposomes, is the critical micelle concentration (CMC), i.e., the relatively narrow con-
centration range over which amphiphile dispersions show an abrupt change in physi-
cal properties. At concentrations below the CMC, the phospholipids are in monomeric 
form; at the CMC, aggregation of the molecules produce micelles, and the physical prop-
erties of the dispersion show changes. The CMC values depend on intrinsic factors such 
as structure of the hydrophobic and hydrophilic parts of the amphiphile molecule and 
external factors such as medium temperature and composition (ionic strength, dielectric 
constant, pH) (Priev et al. 2002). For the purpose of this review, only the physicochemi-
cal parameters of phospholipids affecting liposomes characteristics will be discussed.

The transition temperature of phospholipids (TC) (the temperature at which phos-
pholipids shift from gel to liquid crystalline phase), is one of the main parameters in 
the manufacture of liposomes (Zamani et  al. 2018). TC depends on the length of the 
fatty acid chains, their degree of saturation, charge and head group species, as shown 
in Table 1 (Li et al. 2014; Hussain et al. 2017; Monteiro et al. 2014). TC determines the 
fluidity and permeability of the liposome bilayer. In fact, at temperatures lower than 
TC the phospholipids are in gel phase, which has low fluidity and low permeability. In 
contrast, at temperatures higher than TC, phospholipids are in liquid-crystalline phase, 
having greater fluidity and permeability but low permeability to certain particles. Also, 
as shown in Table  1, the longer the chain the higher the TC is. The TC decreases, the 
more double bonds. Thus, when compared at certain temperatures, bilayers with long 
and saturated hydrocarbon chains are more rigid and less permeable than bilayers with 
shorter and unsaturated chains (Monteiro et  al. 2014; Lin and Gu 2014; Murthy et  al. 
2016; Kraft et al. 2014) (Fig. 2). The transition temperature and lipid composition influ-
ence the curvature of liposomes, i.e., a liposome whose diameter varies between 100 and 
200 nm can be appreciated as a sphere whose curvature will be defined by a homogene-
ous surface perimeter. However, the surface of the liposome can actually present a rip-
ple phase depending mainly on the lipid composition and temperature that are directly 
related to the aggregate state of the liposome. Therefore, the ripple phase can be consid-
ered as domains of ordered phases of liquid crystalline phase with the gel phase. Other 
compound that can also modify the ripple phase is cholesterol, which directly affects the 
fluidity of the liposome bilayer increasing fluidity in the core of the bilayer, but increas-
ing viscosity close to phospholipid headgroups. Thus, cholesterol produces similar 
phases to liquid crystalline and gel phases, the so-called disordered and ordered phases. 
Further studies on membrane fluidity of the liposomal dosage forms and their impact on 
drug delivery may improve formulations and their efficacy. Therefore, the phase tran-
sition behavior of the lipid bilayers has been exploited to improve liposome aggrega-
tion, curvature of membrane (ripple phase), lipid transfer and drug release. Proper lipid 
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compositions preserve the bilayer structure, as well as physical properties at body tem-
perature (37 °C), which are key considerations for liposome design (Rühling et al. 2017; 
Vallejo et al. 2007).

Modifications of polar and non-polar regions of natural phospholipids have allowed 
researchers to create a wide variety of synthetic phospholipids, which have proved to 
be more stable (Monteiro et al. 2014; Agassandian and Mallampalli 2013). The surface 
charge in liposomes depends on the phospholipid headgroup, and it can be negative, 
neutral or positive. This may alter liposome stability, pharmacokinetics, biodistribution 
and cellular uptake, see Table  1. Negatively charged phospholipids, such as DMPG or 
DOPS, are recognized by macrophages and enter the cell via endocytosis at a faster rate 
than neutral phospholipids, like HSPC and DOPE, resulting in a shorter circulation time. 
A small negative charge may stabilize neutral liposomes increasing the electrostatic 
repulsive forces, affecting the aggregation-dependent phagocytic uptake mechanism 
(Olusanya et  al. 2018; Kraft et  al. 2014). On the other hand, cationic liposomes inter-
act with plasma proteins enhancing the uptake by the phagocytic system that promotes 
clearance by the lung, liver or spleen. Moreover, uptake of liposomes with a positive 
charge appears to be much higher than negative liposomes. Thus, negatively charged 
lipid liposomes are common to most FDA-approved liposome formulations (Bourquin 
et al. 2018; Zamani et al. 2018; Kraft et al. 2014; Merino et al. 2018).

Liposomes have a diameter ranging from 20  nm to more than several hundred 
micrometers, as shown in Table  2. Particle size affects their pharmacokinetics, tis-
sue extravasation, tissue diffusion, hepatic uptake, kidney excretion, and clearance rate 
from the site of injection (Zamani et al. 2018; Gao et al. 2018; Olusanya et al. 2018; Kraft 
et al. 2014). Only liposomes of a mean diameter between 100 and 150 nm are able to 
enter fenestrated vessels in the liver endothelium, secondary lymphoid structures, or 
tumor microenvironments (Bourquin et  al. 2018; Gao et  al. 2018; Kraft et  al. 2014). 
Only liposomes with such a diameter can easily escape from blood vessel capillaries that 
perfuse tissues, such as lung, heart, and kidney. On the other hand, particles less than 
10 nm undergo renal filtration through the glomerular capillary wall and are not reab-
sorbed (Gao et al. 2018; Kraft et al. 2014; Merino et al. 2018). Furthermore, cell uptake 
is most relevant to liposomes of 100–150 nm diameter. The immune system phagocy-
tosis is also important, since reduction of liposome diameter to 50 nm or below greatly 
reduces phagocytosis clearance (Kraft et al. 2014; Merino et al. 2018). Thus, liposomes 
within 50–100 nm, such as DaunoXome, avoid phagocytosis and have long blood cir-
culation time (Olusanya et al. 2018; Kraft et al. 2014). Therefore, the optimal range-size 
is between 80 and 150 nm (Olusanya et al. 2018; Kraft et al. 2014; Merino et al. 2018; 
Riaz et al. 2018). It has been demonstrated that larger liposomes can persist longer in the 
injection site (Bourquin et al. 2018), such as  Exparel® and DepoDur™, which are used for 
pain control.

Cholesterol has an important role in the preparation and chemical properties of 
liposomes. This molecule accommodates itself along with the phospholipid chain, with 
its hydroxyl group close to the hydrophilic region and its aromatic rings parallel to the 
fatty acid chain within the bilayer (Fig. 1) due to hydrophobic interactions. Fluidity and 
water permeability decrease because of the increase in mechanical rigidity caused by 
the dense rings (Yingchoncharoen et al. 2016; Monteiro et al. 2014; Sinatra et al. 2014). 
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Various clinically approved liposomal formulations incorporating cholesterol are already 
in the market (Table 2). Cholesterol acts as a cell membrane stabilizer: in its absence, 
liposomes often interact with proteins, including albumin, transferrin, macroglobu-
lin and high-density lipoproteins. Such interaction destabilizes the structure of the 
liposomes and consequently decreases their capacity as drug delivery systems (Ying-
choncharoen et al. 2016; Maranhão et al. 2017; Lu et al. 2013). Cholesterol is also crucial 
for the structural stability of liposome membranes against intestinal environment stress 
(Olusanya et al. 2018; Kraft et al. 2014).

Although their biocompatibility, biodegradability, and ability to encapsulate hydro-
philic, hydrophobic, and amphiphilic compounds are important advantages, one of the 
major drawbacks of conventional liposomes is their rapid clearance from the blood-
stream (Senapati et al. 2018; Gangadaran et al. 2018), which shortens the blood circu-
lation time. To overcome this drawback, several approaches have been used. Small 
fractions of hydrophilic polymers, such as polyethylene glycol (PEG), are used as sur-
face coatings in order to extend blood circulation half-life from few minutes (conven-
tional liposomes) to several hours (stealth liposomes). In fact, PEGylated liposomes with 
a mean 100–150 nm diameter reduce the interaction of liposomes with plasma proteins 
such as opsonins (Yingchoncharoen et  al. 2016; Senapati et  al. 2018; Bourquin et  al. 
2018; Kraft et al. 2014; Lamichhane et al. 2018). Thus, PEG prevents liposome opsoni-
zation and consumption by the reticuloendothelial system (RES) since it entangles 2–3 
molecules of water per oxyethylene unit, which may increase 5–10 times the apparent 
molecular weight. This improves solubility and decreases the aggregation and the immu-
nogenicity of the drug, leading to 10 times longer circulation time and an increase of 
liposome accumulation in damaged tissues (Yingchoncharoen et  al. 2016; Maranhão 
et al. 2017; Li et al. 2013). This PEG-technology has been successfully proven in  Doxil® 
(Bulbake et  al. 2017) and there are various clinically approved stealth and non-stealth 
liposomal formulations with or without cholesterol in the market (Table 2), as compared 
in the following section.

In summary, the properties of the membrane and general structure of liposomes 
depend on (a) the nature of the lipid, either natural or synthetic; (b) the phospholipid 
polar headgroup and its charge; (c) the length and degree of unsaturation of the fatty 
acids; (d) the TC, the temperature before and after the liposome synthesis, and (e) the 
addition of other compounds to the membrane or surface of the liposome such as cho-
lesterol, PEG, proteins, ligands and/or antibodies (Bozzuto and Molinari 2015; Mara-
nhão et al. 2017; Sercombe et al. 2015). The manipulation and design of all the factors 
mentioned above make liposomes versatile and capable of a wide range of functions. 
This has made liposomes one the most explored and used release system to address dif-
ferent functions and specific purposes for the treatment of cancer and other diseases 
(Yingchoncharoen et al. 2016; Maranhão et al. 2017; Monteiro et al. 2014; Meng et al. 
2016; Rose et  al. 2014). Currently, there is a wide variety of liposome formulations 
that are in preclinical and clinical trials, while some others are already being used as 
approved therapies, as will be discussed in the next section.
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Clinical trials: efficacy and toxicity
A literature search regarding clinical studies was carried out in PubMed during April 
and May 2018 using the search term “liposome”. The sort function and the filters were 
used to show only the most recent clinical trials in the PubMed search.

The inclusion criteria were:

• The study must be a phase I, II or III clinical trial.
• The study must report either the side effects or the efficacy of the liposomal formula-

tion.
• The article publishing date must be after 2013.

Pain management: bupivacaine

Liposomal bupivacaine  (Exparel®, Pacira Pharmaceuticals, San Diego, CA) was approved 
for local surgical site injection for postoperative pain after haemorrhoidectomy and 
bunionectomy by the US FDA in 2011 (Yeung et al. 2018). Each liposomal bupivacaine 
particle  (DepoFoam®, Pacira Pharmaceuticals, Parsippany, NJ) is composed of a honey-
comb-like structure of internal aqueous chambers containing encapsulated bupivacaine 
(Mazloomdoost et al. 2017). A single dose (266 mg) of encapsulated bupivacaine amide-
based local anesthetic is injected directly into the surgical site. A slow-release mecha-
nism involving reorganization of the barrier lipid membranes is sustained for up to 92 h 
with concomitant pain control for up to 72  h, as compared to 7–12  h with standard 
bupivacaine. Studies show bupivacaine decreased pain compared to placebo, the use of 
opioids and the hospital costs (Yeung et  al. 2018; Mazloomdoost et  al. 2017; Sabesan 
et al. 2017; Declaire et al. 2017; Smith et al. 2017; Mcgraw-tatum et al. 2017; Abildgaard 
et al. 2017; Alijanipour et al. 2016; Davidovitch et al. 2017). Although the liposomal bupi-
vacaine is not a nanoparticle (3–30 μm mean diameter), it is mentioned here because it 
is one of the most recent liposomal formulations approved. Characteristics and efficacy 
of the last 13 clinical studies with liposomal bupivacaine (LB) for pain management are 
summarized in Table 3. In 2017, Rice et al. (2017) published the pharmacokinetic and 
safety profiles of LB. When administered in two doses (266 mg each) immediately, 24, 
48, 72 h after the first one, the mean maximum concentration (Cmax) of bupivacaine in 
plasma was higher than with only one dose, but did not reach the double of the Cmax 
from a single dose. The highest Cmax was observed in an individual taking the second 
dose 24 h after the first, but was below toxic levels for central nervous system and car-
diac. In general, LB was well tolerated and revealed no clinically relevant unsafety signs 
(Rice et al. 2017), provided excellent pain scores, lower opioids consumption, and at a 
lower cost (Mazloomdoost et al. 2017; Sabesan et al. 2017; Mcgraw-tatum et al. 2017; 
Davidovitch et al. 2017; Johnson et al. 2017; Barron et al. 2016). Thus, liposome formula-
tion of the anesthetic rendered longer therapeutic times with no adverse effects.

Cancer treatment

In this section, the most recent clinical studies using different liposomal drugs for the 
treatment of various solid cancers are described. The meaning of the endpoints in the 
clinical trials described here go as follows: complete response (CR): disappearance of 
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all clinical evidences of disease or all target lesions; partial response (PR), at least 30% 
reduction in size of the target lesions; stable disease (SD), a 30% reduction or less than 
25% increase in the size of all detectable disease; objective response rate (ORR) refers to 
the percentage of patients with partial or complete response to therapy (tumor reduc-
tion); “effects” refers to those effects that are attributable directly to the drug and not the 
natural history of the disease; progression-free survival (PFS) means the time between 
treatment assignments and disease progression or death, not affected by crossover or 
subsequent therapies and generally based on objective and quantitative assessment; 
events-free survival (EFS): time from treatment assignments to disease progression, 
death, or discontinuation of treatment for any reason (e.g., toxicity, patient preference, 
or initiation of a new treatment without documented progression); overall survival (OS): 
time from treatment assignments to patient death, irrespective of cause. Patients who 
are alive or missed to follow-up at the cut-off date are excluded (Fiteni et al. 2014; Vil-
laruz and Socinski 2013; Roever 2016). Table 4 describes the phases of a clinical trial.

Doxorubicin and daunorubicin

Doxil® is the first drug delivery system based on PEGylated liposome technology. It con-
sists of encapsulated doxorubicin hydrochloride, an anticancer drug of the anthracycline 
family that induces caspase-dependent apoptosis in cancer cells through oxidative DNA 

Table 3 Evaluation of  liposomal bupivacaine (LB) effect on  pain scores and  narcotic 
consumption

n number of patients, POD postoperative day, VAS visual analogue scale pain score in POD 3 (0–100 range, 0 = “no pain” and 
100 = “worst pain”), NRS numerical rating scale pain score in POD 3 (0–10 range, 0 = “no pain” and 10 = “worst pain”), POTO 
postoperative total opiates consumption
a Median consumption of opiates for POD 1–3
b At POD 2
c Average on POD 0 through 3
d Obtained by integrating serial pain assessments over the entire time interval
e At POD 1

References Years Surgery n Efficacy at POD 1

VAS score NRS score POTO (mg)

Yeung et al. (2018) 2018 Robotic sacrocolpopexy with 
posterior repair

33 28 – 27.2a

Mazloomdoost et al. 
(2017)

2017 Retropubic sling placement 54 8.25 2 13.56

Davidovitch et al. (2017) 2017 Operative fixation of ankle 
fracture

37 65 – 3.4

Johnson et al. (2017) 2017 Total hip arthroplasty 54 – 3.5 26.3

McGraw‑Tatum et al. 
(2017)

2017 Total hip arthroplasty 40 107.5d – 60.6

Sabesan et al. (2017) 2017 Shoulder arthroplasty 34 41b 2.6 78.6

Abildgaard et al. (2017) 2017 Shoulder arthroplasty 37 40.9a – 103.11

Namdari et al. (2017) 2017 Shoulder arthroplasty 78 39e – 14.4

Amundson et al. (2017) 2017 Total knee arthroplasty 52 – 3.7 45

DeClaire et al. (2017) 2017 Total knee arthroplasty 47 44.4b – 97.7

Smith et al. (2017) 2017 Total knee arthroplasty 104 40c – 10.9

Alijanipour et al. (2016) 2016 Total knee arthroplasty 59 26 – 71.20

Barron et al. (2016) 2016 Laparoscopic hysterectomy 32 – 2.79 360
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damage by blocking topoisomerase IIα, an enzyme needed by cancer cells to divide and 
grow (Table 5). This enzyme also generates free radicals (reactive oxygen species) that 
can lead to lipid peroxidation and membrane impairment (Yingchoncharoen et al. 2016; 
Medina-Alarcón et  al. 2017; Bozzuto and Molinari 2015; Lombardo et  al. 2016). The 
composition of different liposomal doxorubicin formulations (Doxil, LipoDox, Myocet, 
Thermodox, and Caelix), as well as their therapeutic indications and other relevant char-
acteristics are presented in Table 2. Characteristics and efficacy of the reviewed studies 
with liposomal doxorubicin therapy are presented in Table  6. The major toxicities are 
presented in Table 7.

The major drawback of non-liposomal or conventional anthracyclines, such as doxo-
rubicin and daunorubicin, is their related cardiotoxicity (Kaspers et al. 2013; Thorn et al. 
2011).Thisis because cardiac muscle is enriched with mitochondria, which contains 
a high level of anionic diphosphatidylglycerol (cardiolipin) that interacts strongly with 
positively charged doxorubicin, and can lead to lipid peroxidation within cardiac tissue 
(Yingchoncharoen et  al. 2016; Chang and Yeh 2012). Therefore, encapsulated doxoru-
bicin in liposomes (PLD) was developed to overcome the challenges associated with the 
use of free doxorubicin (Miller et al. 2016; Chang et al. 2018; Coltelli et al. 2017; Rocca 
et al. 2017; Zhao et al. 2017; Luminari et al. 2017; Fridrik et al. 2016). In addition, PLD 
showed a reduced cardiac toxicity compared to non-liposomal doxorubicin. Few cardiac 
events were found in most of the clinical trials described in Table 5 (Coltelli et al. 2017; 
Rocca et al. 2017; Luminari et al. 2017; Fridrik et al. 2016; Tampaki et al. 2018).

As previously described, PEGylation may extend the blood circulation time of 
liposomes and improve accumulation in tumor tissues, hence reducing related adverse 
effects (e.g., cardiotoxicity). However, PLD causes specific side effects, such as hand–
foot syndrome (HFS), hypersensitivity reaction, stomatitis and mucositis (Bozzuto and 
Molinari 2015; Chang and Yeh 2012; Zhao et  al. 2017; Casadei et  al. 2018; Jung et  al. 
2017; Bun et al. 2018). PLDs are small enough to pass through the vasculature in both 
tumor and healthy organs, including the skin (Bun et al. 2018). Thus, PLDs are secreted 
in sweat after intravenous infusion. This causes an oxidant/antioxidant imbalance in 
the skin, since doxorubicin and the Cu(II) ions that are abundant in skin tissue gener-
ate reactive oxygen species, leading to HFS lesions (Jung et  al. 2017; Bun et  al. 2018). 
As Table 7 shows, only > 3rd grade stomatitis/mucositis and HFS appeared in the PLD 
studies, but not in the three studies that used  Myocet®, a non-PEGylated version of 
liposomal doxorubicin formulation (NPLD). In addition, Volgger et al. in 2015 reported 
no > 3rd grade stomatitis/mucositis, HFS, or cardiac toxicity in a phase II trial (n = 39) 

Table 4 Description of clinical trial phases

a According to FDA (2018)
b According to American Cancer Society (2018)

Phase No. of  patientsb Durationa Descriptiona

I < 25 Several months Safety and dosage

II 25–100 Several months to 2 years Efficacy and side effects

III At least several hundred 1–4 years Efficacy and monitoring 
of adverse reactions

IV Several thousand  > 4 years Safety and efficacy
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Table 5 Efficacy of  recent clinical trials with  liposomal doxorubicin in  mono 
and combination therapy

References Years Phase Disease LF n Dose by cycle Efficacy

ORR 
(%)

m-PFS 
(months)

Banerjee et al. 
(2018)

2018 II ROC PLD 48 40 mg/m2 IV Q4W 15 3.1

Lee et al. 
(2017)

2017 II ROC PLD 40 50 mg/m2 5 5

Monk et al. 
(2017)

2017 II ROC PLD 149 40 mg/m2 21.5 5.2

Marth et al. 
(2017)

2017 III ROC PLD 109 50 mg/m2 Q4W 21 7.2

Lindemann 
et al. (2017)

2017 III ROC PLD 86 40 mg/m2 16.9 12.7

Herzog et al. 
(2016)

2016 II ROC PLD 15 50 mg/m2 IV Q4W – –

Lee et al. 
(2017)

2017 II ROC PLD + carboplatin 12 50 mg/m2 + 5 AUC 33.3 13

Sehouli et al. 
(2016)

2016 III ROC PLD + carboplatin 5 30 mg/m2 + 5 AUC 75.1 11

Nagao et al. 
(2016)

2016 I ROC PLD + carbopl‑
atin + paclitaxel

7 30 mg/m2 + 60 mg/
m2 + 6 AUC 

33 12

Landrum et al. 
(2016)

2016 I ROC PLD + carboplatin + veli‑
parib

10 30 mg/m2 + 5 
AUC + 50 mg

50 –

Kim et al. 
(2015)

2016 I ROC PLD + carboplatin + far‑
letuzumab

15 30 mg/m2 + 5–6 
AUC + 2.5 mg/kg

73.2 10.4b

Runnebaum 
et al. (2018)

2018 II ROC PLD + trabectedin 77 30 mg/m2 + 1.1 mg/m2 
IV Q3W

31 6.3

Monk et al. 
(2017)

2017 II ROC PLD + motolimod 148 40 mg/m2 + 30 mg/m2 20.9 4.8

Marth et al. 
(2017)

2017 III ROC PLD + trebananib 114 50 mg/m2 
Q4W + 15 mg/kg 
Q1W

46 7.6

Shoji et al. 
(2017)

2017 II ROC PLD + irinotecan 31 30 mg/m2 32.3 2

Thaker et al. 
(2017)

2017 I ROC PLD + GEN 7 50 mg/m2 + 36 mg/m2 29 4.7

Herzog et al. 
(2016)

2016 II ROC PLD + vintafolide 22 50 mg/m2 IV 
Q4W + 7.5 mg IV 
Q2W

– –

Jehn et al. 
(2016)

2016 II MBC Caelix® 25 25 mg/m2 4.5 1.75a

Harbeck et al. 
(2016)

2016 III MBC PLD 105 150 mg/m2 – 6a

Chang et al. 
(2018)

2018 II MBC PLD + CPM 21 30 mg/m2 
Q4–6W + 60 mg/m2 
PO daily

21 6.4

Tampaki et al. 
(2018)

2018 II BC PLD + CPM + bevaci‑
zumab + paclitaxel

62 30 mg/m2 + 600 mg/
m2 + 8 mg/
kg + 120 mg/m2 
Q2W

95.2 –
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LF liposomal formulation, ORR objective response rate, m-PFS median progression‑free survival, CPM cyclophosphamide, 
PLD PEGylated liposomaldoxorubicin,GEN an IL‑12 plasmid formulated with PEG–PEI–cholesterol lipopolymer; Q4W, Q3W, 
Q2W, Q1W, every 4, 3, 2 and 1 weeks, respectively, AUC  areas under curve, ROC recurrent ovarian cancer, MBC metastatic 
breast cancer, BC breast cancer, TNBC triple‑negative breast cancer, RMM relapse or refractory multiple myeloma, MM 
multiple myeloma, MHL multirelapsed Hodgkin’s lymphoma, DLBCL diffuse large B‑cell lymphoma
a TTP, time to progression [the event of interest is only disease progression, while patients who die of other causes are not 
included (Fiteni et al. 2014)]
b Median radiologic PFS
c Median overall survival. The median follow‑up for survival was 103 months (8.6 years)

Table 5 (continued)

References Years Phase Disease LF n Dose by cycle Efficacy

ORR 
(%)

m-PFS 
(months)

Basho et al. 
(2016)

2016 I TNBC PLD + bevaci‑
zumab + temsirolimus

24 30 mg/m2 + 15 mg/
kg Q3W + 25 mg 
Q1W IV

21 4

PLD + bevaci‑
zumab + everolimus

9 30 mg/m2 + 15 mg/
kg Q3W IV + 7.5 mg 
PO daily

Rocca et al. 
(2017)

2017 I BC PLD + lapatinib 9 30 mg/m2 
Q3W + 1500 mg/day 
on days 1–21

11 5.75a

Coltelli et al. 
(2017)b

2017 II BC Myocet® + CPM  
+ paclitaxel

47 60 mg/m2 + 600 mg/
m2 IV Q3W + 80 mg/
m2 Q1W

– –

Orlowski et al. 
(2016)

2016 III RMM PLD + bortezomib 324 30 mg/m2 + 1.3 mg/m2 – 33.0c

Cohen et al. 
(2018)

2018 II MM PLD + pomalido‑
mide + dexametha‑
sone

16 5 mg/m2 + 40 mg 
IV days 1, 4, 8 and 
11 + 4 mg/day for 
21 days, 28‑day cycle

31 5

Becker et al. 
(2016)

2016 II MM PLD + borte‑
zomib + CPM +  
dexamethasone

20 30 mg/m2 IV 
Q4W + 1.6 mg/
m2 + 300 mg/
m2 + 40 mg three 
times by cycle

90 –

Voorhees et al. 
(2017)

2017 I RMM PLD + bortezomib + vori‑
nostat

32 30 mg/m2 + 1.3 mg/
m2 + escalating dose 
of vorinostat

65 13.9

Casadei et al. 
(2018)

2018 I MHL PLD 9 60 mg IV Q3W 50 –

Luminari et al. 
(2017)

2017 II DLBCL Myocet® + CPM + vin‑
cristine + pred‑
nisone + rituximab

49 50 mg/m2 + 750 mg/
m2 and 1.4 mg/m2 
day 1 + 100 mg days 
1–5 + 375 mg/m2 
day 3 of each cycle

72 17

Fridrik et al. 
(2016)

2016 II DLBCL Myocet® + CPM + vin‑
cristine + predniso‑
lone + rituximab

40 50 mg/m2 + 750 mg/
m2 + 1.4 mg/
m2 + 40 mg/m2/day 
for 5 days + 375 mg 
IV QW3

97.5 –

with NPLD conducted by AGO (Volgger et al. 2015). Also, Baselga et al. reported that 
9% of NPLD-treated patients showed > 3 grade stomatitis and a higher heart safety in 
a phase III clinical trial (n = 179) than with doxorubicin (Pharmachemie B.V.) (Baselga 
et al. 2014). Nevertheless, NPLD exhibits a short half-life compared to PLD, leading to 
use higher NPLD doses than PLD (50–70 mg/m2 Q3W, Table 6) (Zhao et al. 2017).

Other liposomal formulations with doxorubicin designed to be more tolerable 
and more effective than free doxorubicin have been developed, such as MM-302 and 
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 ThermoDox®. The MM-302 formulation is a HER2-targeted antibody–liposomal dox-
orubicin conjugate that specifically targets HER2 overexpressing cells, increasing the 
delivery of doxorubicin to tumor cells and limiting exposure to healthy cells, such as car-
diomyocytes. Lipid compositions are shown in Table 2. In 2016, Miller et al. (2016) used 
the MM-302 formulation plus trastuzumab (30 mg/m2 + 14 mg/kg IV Q3W, respectively) 
in a phase II trial in patients with HER2-positive locally advanced/metastatic breast can-
cer.  ThermoDox® is a specially formulated and long-circulating lyso-thermosensitive 
liposomal doxorubicin that has been used clinically combined with radiofrequency abla-
tion (RFA) to remove the core of the tumor. In a phase I trial, (Oxford.) Lyon et al. (2017) 
explored the safety and feasibility of using an extracorporeal ultrasound-guided focus 
ultrasound (FU), a non-invasive clinical treatment modality, to induce highly localized 
hyperthermia in liver tumors in order to trigger the release of doxorubicin and enhance 
the delivery of systemically circulating  ThermoDox® (50 mg/m2). No results have been 
reported in the study.

DaunoXome® was the first liposomal daunorubicin formulation developed by NeX-
star Pharmaceuticals in 1996 for the management of HIV-associated Kaposi’s sarcoma 
(Table 2). Because of their small size (45–80 nm), the reticulo-endothelial system (RES) 
uptake of DaunoXome is diminished, leading to extensive drug circulation. DaunoX-
ome has a half-life of between 4 and 5.6 h, longer than that of free daunorubicin ≈ 0.77 h 
(Bulbake et al. 2017). Moreover, as described previously, liposomally entrapped anthra-
cyclines cause less cardiotoxicity than conventional anthracyclines, such as doxorubicin 
and daunorubicin (Kaspers et al. 2013; Thorn et al. 2011). CPX-351 is also a liposomal 
daunorubicin formulation encapsulating cytarabine at a 5:1 molar ratio within 100-nm-
diameter liposomes, which was found to be maximally synergistic and minimally 
antagonistic. Each unit of CPX-351 is composed of 0.1 mg of cytarabine and 0.44 mg 
of daunorubicin. It also increases the plasma’s half-life and leads to drug accumulation 
within the bone marrow (Gergis et al. 2013; Cortes et al. 2015; Lancet et al. 2014).

In a PubMed search covering 2013–2018, only six clinical studies using liposomal dau-
norubicin were found. The studies’ characteristics and toxicity indexes are, respectively, 
shown in Tables 7 and 8. The study by Creutzig et al. (2013), using liposomal daunoru-
bicin, achieved the larger percentage of patients with a complete response (89%), fol-
lowed by the study of Gergis et  al. (2013), which uses CPX-351 (72.2%) (Cortes et  al. 
2015), which uses CPX-351 (72.2%) (Gergis et al. 2013). The two studies showed low tox-
icity levels, as same as the study by Kaspers et al. (2013), as shown in Table 9. However, 
thanks to a phase III study that demonstrated better overall survival rate (Kraft et  al. 
2014), FDA recently approved the liposomal combination of daunorubicin and cytara-
bine, CPX-351 (Vyxeos™), for the treatment of acute myeloid leukemia (AML), as shown 
in Table 8. In general, liposomal daunorubicin proved to be effective with a low cardiac 
toxicity profile in an increased anthracycline dose in older patients, children, and ado-
lescents (Gergis et al. 2013; Lancet et al. 2014; Kaspers et al. 2013; Creutzig et al. 2013). 

Irinotecan

Irinotecan, also known as CPT-11, is a water-soluble semi-synthetic analogue of the 
natural alkaloid camptothecin. It prevents DNA from unwinding and replicating by 
inhibition of topoisomerase-I. It is used as antineoplastic agent to treat various types 
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of cancers, diarrhea, and myelosuppression.  Onivyde® (nal-IRI) is a nanoliposomal 
hydrochloride irinotecan formulation approved by the FDA in the US and the Euro-
pean Medicines Agency for the treatment of metastatic pancreatic adenocarcinoma 
(mPAC) in combination with 5-FU/LV, a fluoropyrimidine-based agent, in patients pre-
viously treated with gemcitabine-based therapy (Pelzer et  al. 2017; Clarke et  al. 2017; 
Wang-gillam et  al. 2016; Chiang et  al. 2016). In 2017, Clarke et  al. (2017) published a 
phase I trial of nal-IRI in patients with recurrent high-grade glioma to assess the safety 
and pharmacokinetics (PKs) of nal-IRI and to determine the maximum tolerated dose 
(MTD). Patients homozygous WT for UGT1A1 (a genotype reported as toxicity predic-
tor when heterozygous) were initially dosed at 120 mg/m2 IV Q3W and with 60 mg/m2 
dose increments, while heterozygous (WT/*28 UGT1A1) patients were started at 60 mg/
m2 with dose increments of 30 mg/m2. In the WT cohort (n = 16), the MTD was 120 mg/
m2; in the HT cohort (n = 18), the MTD was 150  mg/m2. Nal-IRI had no unexpected 
toxicities. PFS-6 was 2.9%, median PFS was 42 days and median OS was 107 days. The 
terminal half-life for nal-IRI did not change with dosage. In 2016, Chiang et al. (2016) 
(PharmaEngine, Inc.) published a phase I dose escalation study of nal-IRI in patients 
with advanced solid tumors. In this study, the dose-limiting toxicity (DLT), MTD and 
PKs were investigated. Three individuals were dosed with 60  mg/m2, six with 80  mg/
m2, five with 100 mg/m2, and two with 120 mg/m2 on day 1, followed by 5-FU 2000 mg/
m2 and LV 200 mg/m2 on days 1 and 8 IV Q3W. Four patients showed DLT: two at the 
100 mg/m2 dosage level, and two at the 120 mg/m2. The MTD was 80 mg/m2, which, 
after the study, has been the recommended dosage. The most common observed adverse 
effects were nausea (81%), diarrhea (75%), and vomiting (69%). Only four individuals had 
stable disease, one showed partial response, and the other, a progressive disease. The 
irinotecan liposome injection increased the bioavailability. Maximum plasma concen-
tration decrease and half-life increased. The area under the plasma concentration–time 
curve from zero to infinity of SN-38 (the active metabolite of irinotecan) was higher than 
irinotecan itself at a similar dosage level. Thus, liposomal dosage form improved phar-
macokinetic parameters of the chemotherapeutic drug, without adding more adverse 
effects than the drug itself.

The US FDA approved nal-IRI + 5-FU/LV based on results from the NAPOLI-1 clin-
ical trial (Pelzer et  al. 2017). This phase III trial of Wang-Gillam et  al. (2016) (Merri-
mack Pharmaceuticals) was published in 2016 and demonstrated that the combination 
of nal-IRI + 5-FU/LV (80  mg/m2 + 2400  mg/m2 + 400  mg/m2, respectively) improved 
median overall survival (6.1 vs. 4.2 months) and median progression-free survival (3.1 
vs. 1.5 months) compared with 5-FU/LV therapy alone in metastatic pancreatic cancer 
after previous gemcitabine-based therapy. The grade 3 or 4 adverse events that most fre-
quently occurred in the 117 patients assigned nanoliposomal irinotecan plus fluoroura-
cil and folinic acid were neutropenia (27%), diarrhea (13%), vomiting (11%), and fatigue 
(14%). It can be concluded that nanoliposomal irinotecan, in combination with 5-FU/
LV, extends survival rates with a manageable safety profile in patients with metastatic 
pancreatic ductal adenocarcinoma.
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Paclitaxel and docetaxel

Paclitaxel inhibits tumor endothelial cells growth, through combination with beta micro-
tubules (Qu et al. 2017; Xu et al. 2013; Slingerland et al. 2017). Because of the paclitaxel’s 
(PTX) insolubility in water, polyethoxylated castor oil (Cremophor EL) and dehydrated 
ethanol in a 1:1 (v/v) ratio are used as formulation vehicles, although it has toxic effects, 
such as hypersensitivity reactions, hyperlipidemia and neurotoxicity (Bulbake et al. 2017; 
Xu et al. 2013; Slingerland et al. 2017; Ahn et al. 2014; Graziani et al. 2017; Strieth et al. 
2013). To avoid these drawbacks, many Cremophor-free liposomal paclitaxel (LPTX) 
formulations have been approved by FDA, such as (1) LEP-ETU, a conventional cati-
onic nanosome with a size of about 150 nm (Slingerland et al. 2017); (2) EndoTAG™-1, a 
cationic liposome formulation of lipid-embedded paclitaxel, which interacts with nega-
tively charged tumor endothelial cells lessening their tumor blood supply (Strieth et al. 
2013; Awada et al. 2014; Haas et al. 2012; Ignatiadis et al. 2016); and (3)  Lipusu® (Sike 
Pharmaceutical Co. Ltd., Nanjing, Jiangsu, P.R. China), a formulation approved in China 
prepared by using film dispersion methods followed by a lyophilization technique (Xu 
et  al. 2013; Slingerland et  al. 2017; Ahn et  al. 2014; Graziani et  al. 2017; Strieth et  al. 
2013; Awada et  al. 2014; Haas et  al. 2012; Ignatiadis et  al. 2016; Ye et  al. 2013). Even 
Cremophor-free liposome-like formulations, such as Genexol-PM, a polymeric micelle 
formulation of paclitaxel (Samyang Co., Seoul Korea) (Ahn et al. 2014), and PTX–LDE, a 
lipid core nanoparticle with encapsulated paclitaxel that binds to low-density lipoprotein 
receptors of cancer cells and concentrates in the tumor tissues (Graziani et  al. 2017). 
Compositions of liposomal and non-liposomal formulations are shown in Table 2.

Table  10 shows the characteristics of the most recent liposomal PTX formulation, 
which include clinical trials, liposomal formulation, number of patients, dosage, and 
treatment efficacy. In Table 11, a toxicity map is provided. As shown in the non-small-
cell lung carcinoma (NSCLC) treatment, the study of Lu et  al. (2015) had the highest 
endpoint outputs (ORR 81%, PFS 16.5  months, OS 23.2  months), while the study of 
Wang and Zhang (2014) had the lowest (ORR 44%, PFS 6 months). This may be caused 
by the addition of gemcitabine. Ahn’s et al. study also combined gemcitabine with pacli-
taxel encapsulated within a non-liposomal formulation (polymeric micelle). The results 
were similar to those of Wang et al. (2014) and Hu et al. (2013) used L-PTX plus cis-
platin for the treatment of NSCLC but did not report any results. The study of Lu et al. 
was the most effective in the treatment of NSCLC, but it also showed the highest toxicity 
levels, as shown in Table 11. 

Docetaxel is a semi-synthetic taxane analogue and an antimitotic agent which binds 
itself to the beta subunit of tubulin and causes stabilization of tubulinpolymerization. 
This stabilization results in a microtubule disrupting and cell cycle arrests at the  G2/M 
phase, thus inhibiting mitosis. It is poorly soluble in water, and is commonly used in the 
treatment of a variety of solid tumors (Mahalingam et al. 2014; Deeken et al. 2013). Due 
to its insolubility, the currently marketed docetaxel (Taxotere) is formulated in Tween 
80 and ethanol. However, this compound has been implicated in infusion-related tox-
icity, acute hypersensitivity reactions, as well as cumulative fluid retention. To avoid 
such undesirable side effects, several Tween 80-free and ethanol delivery systems have 
been developed and clinically tested, such as nanosomes, polymeric micelles, protein, 
and nanospheres (Deeken et al. 2013; Ahmad et al. 2014). For instance, in the phase I 
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clinical trial of Mahalingam et  al. (2014) (University of Texas Health Science Center), 
15–110 mg/m2 of ATI-1123, a liposomal formulation of docetaxel that uses protein-sta-
bilized nanoparticles encapsulating docetaxel in the liposome, was administered Q3W 
to 29 adult patients with advanced solid tumors (lung, pancreas, prostate, cervix, and 
ovarian). The partial response and stable disease percentages were 3% and 75%, respec-
tively. The grade > 3 toxicities were as follows: 65% neutropenia, 28% anemia, 7% nausea, 
7% vomiting, 3% asthenia, 14% fatigue, and 10% febrile neutropenia. Ahmad et al. (2014) 
administered 75 mg/m2 of a nanosomal docetaxel lipid suspension in 49 patients with 
metastatic breast cancer where no > 3 grade toxicities were reported. The complete and 
partial responses were 4.2% and 31.3%, respectively. Deeken et al. (2013) used a liposo-
mal docetaxel formulation with a mean diameter of 100 nm composed by DOPC, cho-
lesterol, cardiolipin, and alpha-tocopheryl acid succinate to 24 patients (50–132 mg/m2 
IV Q3W) with advanced solid tumors. The partial response and stable disease percent-
ages were 8% and 33%, respectively. Only a 38% of > 3 grade neutropenia was reported. 
In conclusion, liposomal docetaxel shows an acceptable tolerance, improves clinical 
efficacy without any premedication and thus, a beneficial treatment for solid tumors 
(Mahalingam et al. 2014; Deeken et al. 2013; Ahmad et al. 2014).

Other liposomal formulations for cancer treatment

Mepact® is a liposomal mifamurtide formulation (liposomal muramyl tripeptide phos-
phatidylethanolamine) approved by European Union, Switzerland, and other countries 
for the treatment of osteosarcoma (Venkatakrishnan et al. 2013). In the PubMed search 
for publications on the subject carried out, no recent results were found. In 2014, Ven-
katakrishnan et  al. (2013) published an evaluation of the pharmacokinetics and phar-
macodynamics after a single dose of  Mepact® (4 mg IV) in adult subjects with hepatic 
impairment in comparison with healthy subjects. In 2009, Chou et  al. (2009) (IDM 
Pharma) published a phase III trial (n = 91) of liposomal mifamurtide addition to 
chemotherapy (cis-platin, doxorubicin, methotrexate and ifosfamide) for patients with 
osteosarcoma. The 5-year event-free survival rate for patients who received liposomal 
mifamurtide (n = 46) was 42% vs. the 26% of those who did not (n = 45). The 5-year 

Table 11 Characteristics of  recent clinical trials with  liposomal amphotericin B in  mono 
or combined therapy

IFD invasive fungal diseases, VL visceral leishmaniasis, RFN refractory febrile neutropenia, LF liposomal formulation

References Years Phase Disease LF n Dose

Cornely et al. (2017) 2017 III IFD AmBisome® 228 5 mg/kg

Romero et al. (2017) 2017 III VL AmBisome® 109 3 mg/kg/day for 7 days

AmBisome® + MA 112 10 mg/kg single 
dose + 20 mg  Sb+5/kg/
day for 10 days

Rahman et al. (2017) 2017 III VL AmBisome® + Mil 142 5 mg/kg + 17.5 mg/kg

AmBisome + Par 159 5 mg/kg + 150 mg/kg

AmBisome® 158 15 mg/kg

Miyao et al. (2016) 2016 II RFN AmBisome® 80 1 mg/kg

Wasunna et al. (2016) 2016 II VL AmBisome® + SSG 51 10 mg/kg + 20 mg/kg/day

AmBisome® + Mil 49 10 mg/kg + 2.5 mg/kg/day
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overall survival rate for patients who received Mepact compared to those who did not 
received Mepact was 53% and 40%, respectively. Moreover, data suggest that liposomal 
mifamurtide might provide a benefit when added to chemotherapy for the treatment of 
osteosarcoma.

Vincristine sulfate, a semi-synthetic chemotherapeutic agent, has been encapsulated 
in sphingomyelin/cholesterol nanoliposomes to overcome the dosing, pharmacokinetic, 
and pharmacodynamic limitations of non-liposomal vincristine. This vincristine injection 
dosage form (VSLI,  Marqibo®) has been approved by FDA, since it has proved to be safe. 
It also showed tolerability, enhanced vincristine cell uptake, penetration and concentra-
tion in tissues and organs with fenestrated vasculature or involved in the mononuclear 
phagocyte system, including non-Hodgkin lymphomas. It did not show toxic effects, but 
high ORR. Thus, it provides encouraging PFS and OS when substituted for standard vin-
cristine in polytherapy (Shah et al. 2016; Kaplan et al. 2014; Hagemeister et al. 2013). In a 
phase I study carried out in 2016 with 21 patients suffering of refractory solid tumors or 
leukemias, no subjects experienced dose-limiting toxicity (DLT) at the first dosage level 
(1.75 mg/m2/dose). Even though, at 2.25 mg/m2, one subject had transient dose-limiting 
grade 4 transaminase elevation, no additional DLT was observed when the dose level was 
increased. A stable disease was observed in nine patients, although in one subject with 
leukemia, a minimal residual disease and a negative complete remission was observed. 
Children were able to tolerate adult dosages (2.25 mg/m2/dose of weekly VSLI) with no 
evidence of neurotoxicity (Shah et al. 2016). In a phase II study of Marqibo and rituxi-
mab (Therapeutics Inc.), the ORR was 59%: 27% of complete response, and 32% of par-
tial response in 22 patients with relapsed and refractory diffuse large B-cell lymphoma 
(DLBCL) or mantle cell lymphoma (MCL). Median response duration was 147 days, TTP 
was 121 days, and overall survival was 322 days. Nevertheless, patients reported adverse 
effects like Grade 3 peripheral neuropathy, febrile neutropenia, and constipation. Thus, 
VSLI + rituximab provokes a durable response in those lymphomas. Adverse effects 
were manageable (Kaplan et  al. 2014). In a phase II study, 72 patients with untreated 
and aggressive non-Hodgkin lymphomas, including 60 with DLBCL, were treated with 
 Marqibo® plus cyclophosphamide, doxorubicin, and prednisone (2  mg/m2 + 750  mg/
m2 + 50 mg/m2 IV + 100 mg PO Q3W, respectively), with or without rituximab (375 mg/
m2 IV Q3W). Of them, 96% showed complete response and 3% were unconfirmed. 
The 5-year and 10-year PFS and OS were 75% and 63%; and 87% and 77%, respectively. 
Although exposure was up to 35 mg, this multidrug treatment (Marqibo plus cyclophos-
phamide, doxorubicin, and prednisone ± rituximab) was as safe as the same therapy with 
non-liposomal vincristine. As for the adverse effects, grade 3 peripheral neuropathy was 
reported in 3% of the patients and there was no reported Grade 3/4 constipation. All 
this demonstrates that the encapsulation does not alter the safety properties of the drug. 
Moreover, Marqibo was well tolerated and showed a higher activity, probably due to the 
pharmacokinetic optimization and the enhanced delivery (Hagemeister et al. 2013).

Liposomal cytarabine  (Depocyt®) is a slow-release dosage form of cytarabine that 
results in cytotoxic cytarabine concentrations in the cerebrospinal fluid for at least 
1  week, while non-liposomal cytarabine is maintained for only 24  h (Levinsen et  al. 
2016; Ferreri et al. 2015; Peyrl et al. 2014). In 2016, Levinsen et al. (2016) published a 
phase II trial (n = 40) that investigated the efficacy and toxicity of intrathecal liposomal 



Page 28 of 40Beltrán‑Gracia et al. Cancer Nano           (2019) 10:11 

cytarabine in comparison with conventional triple (cytarabine, methotrexate, and hydro-
cortisone) intrathecal therapy for the treatment of childhood acute lymphoblastic leuke-
mia.  Depocyt® showed acceptable toxicity when administered as first-line therapy with 
concomitant use of dexamethasone, which suggests that it could play a future role in 
improving outcomes in children with acute lymphoblastic leukemia. Peyrl et al. (2014) 
studied the pharmacokinetics and toxicity of intrathecal liposomal cytarabine in sixteen 
children and adolescents with malignant brain tumors. In general, liposomal cytarabine 
was well tolerated, with relevant but manageable toxicities that showed sufficient drug 
exposure for at least 1 week (Peyrl et al. 2014).

Molecular therapy

Patisiran  (ONPATTRO®) is a siRNA-delivering liposome developed and marketed by 
Alnylam, for the silencing of a specific gene responsible for expression of transthyretin 
(TTR), which can cause hereditary transthyretin amyloidosis (Anselmo and Mitragotri 
2019). The composition of this liposomal formulation is in Table 2. Actually, ONPAT-
TRO is the newest approved liposomal formulation here described. It is also the first 
clinicallyapproved example of an RNAi therapy-delivering nanoparticle administered 
intravenously, and it is actually the first therapeutic RNAi approved by the FDA as well, 
independent of the nanoparticle delivery vehicle (Anselmo and Mitragotri 2019; Adams 
et al. 2018), which was the major milestone in the biotech and nanomedicine industry 
(Anselmo and Mitragotri 2019). RNA interference is a cellular process that controls gene 
expressions, in which small interfering RNAs (siRNAs) mediate the cleavage of specific 
messenger RNAs (mRNAs). Patisiran comprises a TTR mRNA-specific siRNA formu-
lated (Anselmo and Mitragotri 2019; Adams et al. 2018; Suhr et al. 2015). Clinical data 
have shown a potent and sustained knockdown of TTR expression and, while there have 
been side effects, there has been little evidence of safety concerns about platelets, renal 
function or liver enzyme elevations. The results were published in July 2018 (Adams 
et al. 2018) and found that the drug reduced TTR production by about 81%. The follow-
ing month, patisiran was approved by both the US Food and Drug Administration and 
the European Medicines Agency (EMA). The efficacy was shown in a clinical trial involv-
ing 225 patients, 148 received an patisiran infusion once every 3 weeks for 18 months, 
The patients who received the RNA had better outcomes on measures of polyneurop-
athy including muscle strength, sensation (pain, temperature, numbness), reflexes and 
autonomic symptoms (blood pressure, heart rate, digestion) compared to those receiv-
ing the placebo infusions (Minamisawa et al. 2019), additional investigation suggests that 
patisiran may stop or possibly reverse the progression of hATTR (Solomon et al. 2019).

MRX34 mimics miR-34a, a miRNA suppressor of more than 30 oncogenes. It is the 
first-in-class drug. It is encapsulated in a liposomal nanoparticle with ≈ 110 nm diam-
eter. The liposomal component contains amphiphilic lipids, which display a positive 
charge under acidic conditions, ensuring the efficient encapsulation of the negatively 
charged miR-34a mimic, and a negative charge in vivo at neutral pH to minimize aggre-
gation and electrostatic adherence to the cell membrane of endothelial cells. miR-34a 
shows interesting pharmacological properties in mice and non-human primates: it has 
a long residence time in blood, inhibits growth of primary tumors, blocks metastasis, 
and extends survival (Beg et al. 2016; Li et al. 2013). In a phase I trial with 47 patients 
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showing refractory advanced solid tumors, MRX34 dosage (escalating twice-weekly) 
showed evidence of antitumor activity. In 2016, a phase I clinical trial of miRNA cancer 
therapy was carried out, in these study, 47 patients were treated twice a week with esca-
lating doses of MRX34 IV  (BAYER®) (Davidovitch et al. 2017). MRX34 treatment with 
dexamethasone premedication was associated with acceptable safety indexes. Remark-
ably, it demonstrated that MRX34 has in vivo antitumor activity even in patients with 
refractory advanced solid tumors, including hepatocellular carcinoma (HCC). The MTD 
for non-HCC patients was 110 mg/m2. Two patients experienced DLT of grade 3 hypoxia 
and enteritis at 124 mg/m2. A patient with HCC achieved a prolonged confirmed partial 
response lasting 48 weeks, and four patients experienced stable disease for more than 4 
cycles (Beg et al. 2016; Li et al. 2013).

In 2016, a phase I clinical trial was carried out with 20 patients with multiple scle-
rosis (MS) (Pharmsynthez OJSC). Treatment was performed with myelin basic protein, 
the structural component of the myelin membrane. It was coencapsulated in CD206-
targeted small monolamellar mannosylated liposomes prepared from egg phosphati-
dylcholine and monomannosyl dioleoyl glycerol with α-tocopherol and lactose (Xemys; 
Pharmsynthez, St. Petersburg, Russia). Patients were dosed weekly with subcutaneous 
injections of Xemys at escalating doses of 50, 150, 225, 450 and 900 μg, over 6 weeks 
(2.675  mg). Dendritic cells uptake was significantly enhanced by mannosylation of 
liposomes. Administration of Xemys was safe and well tolerated in patients with MS. 
Mild-to-moderate severe adverse effects were observed mainly after submaximal and 
maximal doses. Although no concomitant medication was required, no abnormalities in 
blood or other safety problems were observed (Jr et al. 2016).

Other molecular treatments target the normal human p53 gene, which is a well-known 
tumor suppressor gene. Over 60% of cancers are related to the loss of p53 suppressor 
function. Up to 80% of cancer cases show p53 mutations. Moreover, cells lacking p53 
are more resistant to chemotherapy. In contrast, p53 restoration enhances sensitivity 
to standard therapies. SGT-53 has been designed as an immunoliposome nanocom-
plex designed for systemic, tumor-targeting delivery. This nanodelivery system targets 
transferrin receptor (TFR), a highly expressed receptor on tumor cells, via a single-chain 
antibody fragment (termed as TFRscFv). The complex with the receptor is internalized 
into the tumor cells via endocytosis. In 2016, a trial with 14 patients with advanced can-
cer was administered with escalating doses of a combination of SGT-53 and docetaxel. 
The combination was well tolerated. Three of 12 patients showed partial responses with 
tumor reduction of 47%, 51% and 79%, while the others showed stable disease (Pirollo 
et al. 2016).

Fungal and bacterial infections

Amphotericin B

Invasive fungal infections (IFI) are considered opportunistic since they occur when 
the patient is predisposed to medical treatments (Sánchez et al. 2016) because of can-
cer, malignant hematological neoplasms (cryptococcosis), bone marrow transplants, or 
hematopoietic progenitors, immunosuppressive treatments (fusarosis), prolonged neu-
tropenia, and immunodeficiencies in cells (zygomycosis or mucormycosis), as well as 
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hepatic dysfunction (invasive candidiasis), injured mucous membranes (invasive asper-
gillosis), among others (Tacke et al. 2014).

Amphotericin B is used for the treatment of invasive fungal infections (Delattin et al. 
2014) and acts by binding itself to sterols in the cell membrane of susceptible fungi, with 
a resulting change in membrane permeability. The first liposomal formulations were 
presented as  AmBisome® from NeXstar Pharmaceuticals, Inc. (now Astellas Pharma, 
Inc.); lipid complexes such as  Abelcet® from Enzon Pharmaceuticals (now Sigma Tau 
Pharmaceuticals, Inc. and  Amphotec® from InterMune, Inc. (now Kadmon Pharma-
ceuticals, Inc.) (Table 2). Since the 1970s, more than 353 patents have been registered, 
some of which protect the formulation of liposomes under specific characteristics, e.g., 
liposomes and lipid complexes intercalating amphotericin B (Verma et al. 2005).

Table  11 shows the characteristics of recent studies using amphotericin B to treat 
fungal infections as described below. In the study of Cornely et al. (2017), the primary 
endpoint was the rate of proven/probable IFI: 7.9% to liposomal amphotericin B (AmBi-
some) group, and 11.7 to placebo group, suggesting that AmBisome is not as effective as 
prophylaxis against invasive fungal diseases (IFD) in these patients, which is difficult to 
explain since AmBisome is effective against IFD. The chosen dose to minimize toxicity 
represented a major limitation of the study. However, more patients in the AmBisome 
group than in the placebo group had adverse effects (AE). This resulted in the interrup-
tion of treatment with the drug (20.3% versus 7.6%). They also experienced serious AE 
considered to be related to the drug. Mortality was very similar in both groups (7.2% 
and 6.8%, respectively). The complete remission rate was 72.8%, which was lower than 
expected. The low efficacy of AmBisome was attributed to the patients’ baseline char-
acteristics and the diagnostic strategy of IFI. Romero et al. (2017) evaluated the efficacy 
and safety of AmBisome and the combination of AmBisome + meglumine antimoniate 
(MA). The final analyses showed a CR at 6 months of 87.2% for AmBisome, 83.9% for 
AmBisome + MA, and 77.5% for MA alone. AmBisome monotherapy was safer than 
MA, as measured by the frequency of treatment-related adverse events, proportion of 
patients presenting at least one severe AE, and the proportion of AE resulting in defini-
tive treatment discontinuation. In the study of Rahman et al. (2017), a 35-year-old female 
patient presented high-grade fever, rash, and swelling of arms and legs in the AmBi-
some + miltefosine (Milt) group. Treatment wasinterrupted and she was later diagnosed 
with rickettsial fever with concomitant nutritional edema. Approximately, 34% of AE 
were related to the treatment. The proportion of patients that experienced any treat-
ment-related side effects was the highest in the AmBisome + Milt group, and the lowest 
in the AmBisome group (Table 12). None of the other non-fatal AE reported were related 
to the treatment. No drug-related deaths occurred either in the AmBisome group, or in 
the combination groups. In the intention-to-treat (ITT) population, the CR at month 6 
was 98.1% for the AmBisome group, 99.4% to AmBisome + paromomycin, and 94.4% to 
AmBisome + Milt. Although not statistically significant, AmBisome + paromomycin was 
the most effective treatment. In the low-dosage study of Miyao et al. (2016), the most 
frequent events were electrolyte abnormalities, most of which involved hypokalemia 
(7.5% of grade 3 and 3.75% grade 4 cases). AE related with AmBisome that necessitated 
protocol discontinuation occurred in only one case that involved grade 4 glutamate 



Page 31 of 40Beltrán‑Gracia et al. Cancer Nano           (2019) 10:11 

pyruvate transaminase elevation. No patient deaths related to the treatment occurred 
during the study.

In a more recent study by Wasunna et al. (2016), the authors reported the percentage 
of patients cured in day 210 of the treatment as follows: 87% to the AmBisome + sodium 
stibogluconate (SSG) group, and 77% to the AmBisome + Milt group. There were two 
AE related to the studied drug. In the AmBisome + SSG group, severe anemia resulted 
in death at day 20 (the only death considered drug related), and in the AmBisome + Milt 
group, renal failure at day 3 was resolved. 73% and 78% of patients in the AmBi-
some + SSG and AmBisome + Milt had at least one adverse drug reaction. In the AmBi-
some + SSG and in the AmBisome + Milt groups, all non-serious drug-related events 
were categorized as mild to moderate. The only group that contained SSG (combined 
with AmBisome) showed low levels of cardiac disorders (< 5%), which were similar to 
those of the AmBisome + MF group. The authors concluded that a multiple daily dose 
of 3 mg/kg AmBisome may be more beneficial to eliminate fungi than a single 10 mg/
kg dose at day 1, suggesting that a more frequent administration could result in a higher 
efficacy of AmBisome.

Amikacin

Pulmonary nontuberculous mycobacterial disease is a chronic infection with necrotiz-
inginflammation, bronchiectasis, and cavitation with irreversible lung damage and 
increased mortality. To improve efficacy and reduce toxicity, a liposomal amikacin for 
inhalation (LAI)  (Arikace®, ≈ 300  nm), composed of DPPC and cholesterol, has been 
developed. The liposomes are taken up by lung macrophages, allowing for intracellular 
delivery of high levels of amikacin into nontuberculous mycobacterial cells (Rose et al. 
2014; Olivier et al. 2017). In 2018, Caimmi et al. (2018) reported the effect of LAI (590 mg 
daily) on five patients with Mycobacterium abscessus in cystic fibrosis. None of the five 
patients showed any side effects related to the treatment, while three patients showed 
improvement of their pulmonary function test values and their clinical symptoms. 

Table 12 Toxicity of the clinical trials to amphotericin B

In the blanks, this type of toxicity is not reported

IFD invasive fungal diseases, VL visceral leishmaniasis, RFN refractory febrile neutropenia, Ld liver dysfunction, Hk 
hypokalemia, C cardiotoxicity, Na nauseas, D diarrhea, AP abdominal pain, V vomiting, P pneumonia, H hypotension, Mil, 
miltefosine, Par paromycin, SSG sodium stibogluconate, LF liposomal formulation
a No grade > 3 toxicity was reported
b Sinus arrhythmia

References Disease LF Toxicity
Grade 3–5 (%)

Hk Ld C Na D AP V P H

Cornely et al. (2017) IFD AmBisome® 28 8

Rahman et al. (2017) VL AmBisome® + Mil 2 3 2 2 18 18

AmBisome® + Par 0 0 0 1 1 22

AmBisome® 23

Miyao et al. (2016) RFN AmBisome® 11.25 2.5

Wasunna et al. (2016)a VL AmBisome® + SSG 4b 2

AmBisome® + Mil 6b 12



Page 32 of 40Beltrán‑Gracia et al. Cancer Nano           (2019) 10:11 

Moreover, LAI showed to be active against both P. aeruginosa and M. abscessus. In 2017, 
Olivier et  al. (2017) (LAI NTM Study Group) reported the efficacy and safety of LAI 
(590  mg daily) in 44 patients (phase II study) with refractory pulmonary mycobacte-
rial nontuberculous (Mycobacterium avium complex or Mycobacterium abscessus). A 
greater proportion of the LAI group demonstrated at least one negative sputum culture 
(32% vs. 9%), and improvement in a 6-min-walk test (+ 20.6 m vs. − 25.0 m) with lim-
ited systemic toxicity. In 2013, Clancy et al. (2013) published a phase II study of LAI (70, 
140, 280, and 560 mg; n = 7, 5, 21, and 36) in cystic fibrosis patients chronically infected 
with P. aeruginosa. The adverse event profile was similar among Arikace and placebo 
subjects, but the lung function was higher in the 560 mg dose group. Also, the sputum P. 
aeruginosa density decreased in the 560 mg group against placebo.

Conclusions
Traditional pharmacological agents have to cross many barriers and hostile environ-
ments in the body that degrade them in the way, such as acidic stomach, intestinal 
wall barrier, liver, proteins, and enzymes in the bloodstream and the blood brain bar-
rier to be able to reach the site where they are needed. Thus, they have to be ingested 
over and over again to be effective in the body. However, if ingestion exceeds certain 
doses, the therapeutic agent may become toxic and severely damage one or several 
organs in the body. Nanomedicine emerges as a potential solution to these problems, 
where liposomes are one of the most effective, healthy, and safe nanoparticle struc-
tures developed thus far. Liposomes can go through the body and function like a vehi-
cle that can reach the specific tissue, organ or receptor of interest. This is achieved 
by adding molecules on the liposome surface that function like molecular “keys”. As 
described above, the therapeutically benefits of encapsulating anticancer drugs such 
as daunorubicin, doxorubicin and cytarabine in liposomes have been demonstrated. 
To achieve that, the liposome formulation should be carefully and properly designed. 
This may reduce the toxicity while maintaining or improving treatment efficacy. Phys-
icochemical properties and surface composition of liposomes can be easily adjusted 
and highly personalized, thus dictating the biological destiny of liposomes for each 
individual or disease. Although this is not a simple task, it may represent a turning 
point in the application of nano-membrane technology in personalized cancer ther-
apy and other diseases.
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