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Abstract 

Background:  Radiotherapy is a major therapeutic modality for locally advanced head 
and neck cancer. However, the effectiveness of radiotherapy is hindered by resistance 
mechanisms, most notably hypoxia, leading to unfavourable treatment outcomes. 
In this study, we investigate the radiosensitising potential of AuNPs in combination 
with the complex III electron transport chain inhibitor, using models of head and neck 
cancer.

Results:  AuNP intracellular accumulation occurred in a concentration-dependent 
manner and was not influenced by microenvironmental oxygen levels, with citrate 
capped 15 nm AuNPs readily internalised, accumulating primarily within the cytoplas-
mic compartment. Pre-treatment with atovaquone had a profound and rapid impact 
on oxygen consumption, promoting a glycolytic switch under both normoxic and 
hypoxic conditions, a finding underlined by the concurrent increase in extracellular 
acidification. AuNPs alone sensitised FaDu cells to radiation under atmospheric oxygen 
conditions, producing a sensitiser enhancement ratio (SER) of 1.37. In combination 
with atovaquone, maximum dose enhancements were achieved yielding a SER value 
of 1.43 and 2.1 under normoxic and hypoxic conditions, respectively. Studies to eluci-
date the underlying mechanism of radiosensitisation revealed S-phase accumulation 
and a significant increase in apoptosis. Additionally, combined treatment significantly 
increased yields of unrepaired DNA double strand breaks, indicating increased yields of 
DNA double strand break damage.

Conclusions:  Taken together, we believe this to be the first work providing evidence 
that AuNP radiosensitisation can be enhanced via metabolic modulation. This study 
reveals the dual action of both physical and biological pathways of AuNPs radiosensiti-
sation, resulting in superior radiotherapeutic effects.
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Introduction
Head and neck squamous-cell carcinoma (HNSCC) is frequently an aggressive can-
cer with a high risk of recurrence. HNSCC is the 8th most common cancer in the UK, 
accounting for 3% of all new cancer cases and 2% of all cancer deaths (2016) (Shaw and 
Beasley 2016). Currently, surgery, radiotherapy and chemotherapy, in various combina-
tions, are used in the treatment of HNSCC. The final treatment choice is dependent on 
disease locality, stage at diagnosis, HPV status, potential side effects, patient preference 
and overall health status (Brizel et  al. 1998; Bonner et  al. 2006; Vermorken and Spe-
cenier 2020; Cooper et al. 2004). For locally advanced HNSCC (LA-HNSCC), concomi-
tant radio-chemotherapy remains the standard-of-care treatment, with HPV-positive 
tumours displaying greater radiosensitivity compared to HPV-negative tumours. This 
is reflected in the superior 3year survival data in response to radio-chemotherapy for 
HPV-negative [HPV ( −  )] (57.1%) versus HPV-positive (82.4%) (Göttgens et  al. 2018; 
Mirghani et al. 2015). Despite the fact that concomitant radio-chemotherapy is proven 
to extend overall survival, yielding improved the quality of life, long-term disease-free 
survival is rarely achieved due to intrinsic tumour resistance (Perri et  al. 2015). This 
highlights an important area of unmet clinical need to develop innovative strategies for 
the treatment of HPV( − ) HNSCC.

Radiotherapy is a critical component in cancer management for more than 50% of 
cancer patients (Joiner and Kogel 2018; Delaney et al. 2005). In head and neck cancer, 
radiotherapy is widely utilised for treatment of primary disease and as an adjuvant with 
high local–regional control (Cooper et  al. 2004). However, dose-limiting radiotoxicity 
represents a major challenge that limits the efficacy of the conventional radiotherapy 
(Bentzen 2006). One approach to overcome these obstacles is radiation dose enhance-
ment, improving dose to the tumour while sparing surrounding normal tissue (Janic 
et al. 2021). This can be achieved through modulating tumour radiation response using 
radiosensitisers (Gong et  al. 2021). Examples of radiosensitisers include oxygen mim-
ics, cisplatin, hypoxia specific toxins, iodinated DNA targeting agents, inhibitors of DNA 
damage repair proteins and high atomic number materials such as gold and gadolinium 
(Gong et al. 2021; Wang et al. 2018; Chen et al. 2020).

Over the past decade, gold nanoparticles (AuNPs) have been widely explored as radio-
sensitisers due to their excellent physical and chemical properties (Her et al. 2017; But-
terworth et al. 2012; Penninckx et al. 2020; Schuemann et al. 2020). AuNPs exploit the 
X-ray absorption properties of gold, where interactions with radiation destabilise atomic 
orbital electrons, resulting in a highly localised increase in radiation dose deposition, 
ultimately augmenting the effects of radiotherapy (Hainfeld et al. 2008). Radiosensitisa-
tion by AuNPs remains an active area of research in preclinical settings, with numer-
ous studies demonstrating efficacy both in vitro and in vivo (Hainfeld et  al. 2004; Cui 
et al. 2017; Jeremic et al. 2013). AuNPs are reported to complement the biological and 
chemical interaction of ionising radiation through the induction of ROS, cell cycle syn-
chronisation, increased DNA damage yields, and via bystander effects (Rosa et al. 2017; 
Kempson 2021). However, the radiosensitising potential of AuNPs within the hypoxic 
microenvironment is often compromised, an effect attributed to compromised nano-
particle uptake, a reduction in reactive oxygen species and by the upregulation of vari-
ous pro-survival hypoxia–inducible genes (Jain et al. 2014). These factors contribute to 
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the development of radiation resistance, leading to tumour relapse and treatment fail-
ure. Therefore, a potential strategy to further augment AuNP radiosensitisation is the 
combined treatment with hypoxia modifying drugs, sensitising this treatment resistant 
microenvironment.

Hypoxia is a common feature of most solid tumours occurring in approximately 80% 
of head and neck tumours (Bittner and Grosu 2013). The intrinsic radiation resistance of 
hypoxic cells represents a significant obstacle to the successful application of radiother-
apy (Rockwell et al. 2009). Numerous clinical studies have proven tumour hypoxia as a 
potent negative prognostic factor in head and neck cancer, with low oxygen levels corre-
lating with reduced treatment efficacy and decreased overall survival (Brizel et al. 1997; 
Linge et al. 2016; Eschmann et al. 2005). To date, most attempts to ameliorate the nega-
tive impact of hypoxia involved either increasing endogenous oxygen levels by perfu-
sion of high concentrations of oxygen, or by targeting specific subpopulations of hypoxic 
tumour cells using hypoxia activated prodrugs (HAPs) (Curtis et al. 2016). While effec-
tive in the experimental setting, these approaches yielded only modest benefit in the 
clinical context (Spiegelberg et al. 2019). A recent study revealed that a Warburg pheno-
type in tumour cells, resulted in impaired mitochondrial respiration, enhancing radio-
sensitivity compared to genetically matched parental cells (Bol et al. 2015). This effect 
was related to a differential metabolic rate and aberrant oxygen consumption, suggesting 
that suppression of mitochondrial metabolism could potentially increase susceptibility 
to radiotherapy (Yasui et al. 2017). Such an approach represents a potential strategy for 
all hypoxic tumours, not solely restricted to tumours where oxidative phosphorylation 
activity is upregulated. Furthermore, in silico models also indicate that reduced oxygen 
consumption holds more potential than elevating blood flow or promoting oxygen deliv-
ery, with a 30% decrease in oxygen consumption retaining sufficient molecular oxygen to 
abolish severe radiobiological hypoxia (Spiegelberg et al. 2019). Conversely, an 11-fold 
increase in arterial partial pressure of oxygen (pO2) is required to achieve a compara-
ble level of oxygenation (Grimes et al. 2014). Currently, several pharmacological drugs 
that inhibit cellular oxygen consumption have been investigated for their potential to 
increase tumour oxygenation and thereby enhance radiosensitivity. Metformin, papaver-
ine, arsenic trioxide and atovaquone are all known to influence tumour cell metabolism 
by modifying oxygen consumption (Benej et. al 2018; Diepart et al. 2012)

Atovaquone, an FDA approved drug, is a complex III inhibitor, originally used for 
the prevention and treatment of pneumocystis pneumonia and toxoplasmosis in HIV 
patients (Fry and Pudney 1992; Araujo et  al. 1991). Atovaquone has recently been 
repurposed as hypoxia modifier, where atovaquone treatment induced an 80% reduc-
tion in tumour hypoxia in a range of tumour cell models through targeted inhibition of 
mitochondrial complex III activity. Importantly, this effect contributed to a significant 
tumour growth delay when combined with radiotherapy (Ashton et al. 2016). In addi-
tion, atovaquone also showed efficacy in the treatment of ovarian and breast cancer stem 
cell populations, a rare sub-population of cells linked with development of radioresist-
ance and tumour relapse (Fiorillo et al. 2016; Guo et al. 2021). While current work with 
atovaquone as hypoxia modifier is still at early stage, the ability of atovaquone to allevi-
ate tumour hypoxia appears promising. A recent clinical trial (NCT02628080) demon-
strated that atovaquone reduced tumour hypoxia by up to 55% in non-small cell lung 
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cancer patients (Skwarski et al. 2021). Encouragingly, the authors also reported that the 
most intensely hypoxic tumour voxels, i.e. the most radiologically resistant regions, were 
subjected to the most pronounced reduction in hypoxia, providing important insights 
into the action of atovaquone as a novel radiosensitiser (Bourigault et al. 2021).

In this study, we investigate the effect of targeting multiple pathways of radiosensitisa-
tion as an approach to enhance the radiotherapeutic potential in HPV( − ) HNSCC. We 
hypothesise that the combination of AuNPs, which endow physical dose enhancement, 
with atovaquone as metabolic modulator should result in a greater degree of radiosensi-
tisation compared to either agent alone. To test our hypothesis, we evaluated the radio-
sensitising effects of AuNPs in combination with atovaquone. The effect on nanoparticle 
uptake, apoptosis, and radiation-induced DNA damage will be evaluated to elucidate the 
underlying mechanisms of radiosensitisation conferred by the combined treatment.

Materials and methods
Chemicals

Atovaquone was purchased from Sigma-Aldrich [UK) and was dissolved in 100% DMSO 
to make a 30  µM stock solution. All drug stock solutions were stored at −  20  °C for 
future experimental use.

Cell lines and reagents

CAL27 cells were obtained from the American Type Culture Collection [ATCC), and 
FaDu and CAL33 cells obtained from DSMZ [Brauschweig, Germany). CAL27 cells 
were grown in Dulbecco’s modified Eagle’s medium [DMEM, Sigma-Aldrich) supple-
mented with 2% HEPES (1 M, PAA laboratories), 1% sodium pyruvate (100 mM, Sigma), 
1% non-essential amino acids (100x, Sigma), 10% foetal bovine serum (FBS, Gibco) and 
1% L-glutamine (200 mM, Sigma-Aldrich). FaDu and CAL33 cells were maintained in 
Eagle’s minimum essential medium (EMEM, ATCC) with 10% FBS. All routine culturing 
was carried out at 37 °C and 5% CO2/95% air. Short tandem repeat profiling and myco-
plasma testing (Lonza) were conducted routinely for these cell lines.

Synthesis of AuNPs

AuNPs were prepared according to the classical Turkevich method (Turkevich et  al. 
1951). Briefly, 400  mL of 0.01% chloroauric acid (HAuCl4.4H2O) solution was heated 
and refluxed in a round-bottom flask. Next, 9.6 mL of 1% sodium citrate solution was 
added to the boiling solution to obtain the AuNPs. The reduction of gold chloride by 
sodium citrate was completed after 5 min. The solution was further boiled for 30 min, 
then left stirring overnight at room temperature. Finally, the resultant colloidal solution 
was centrifuged at 12,000 rcf for 90 min and washed with distilled water.

Quantitative evaluation of AuNP uptake in cell monolayers

Cells were seeded in 6-well plates at a density of 4 × 105 cells/well and incubated over-
night. Growth media was then replaced with fresh media containing different concen-
trations of AuNPs (0, 5, 10, 50, 100 µg/mL of gold). Following a 24 h treatment period, 
media containing excess extracellular AuNPs was removed, cells were then washed three 
times with PBS and harvested using 1×trypsin. Cells were counted and centrifuged at 
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500 g for 5 min, supernatant removed, and the cell pellet digested using 1 mL aqua regia. 
Samples were then made to a total volume of 5  ml using Milli-Q water. For hypoxic 
uptake experiments, cells were seeded into 6-well plates and allowed to adhere under 
atmospheric oxygen conditions overnight. The following day cells were transferred to a 
hypoxic workstation station (In Vivo2 400, Baker Ruskinn, UK) for 4 h, then treated with 
AuNPs at differing concentrations for a further 24 h. The concentration of internalised 
gold was measured by inductively coupled plasma atomic emission spectroscopy (ICP-
AES) and reported as concentration of gold (pg) per cell.

Qualitative evaluation of AuNPs internalisation using hyperspectral microscopy

Enhanced darkfield/hyperspectral Cytoviva microscopy was employed for the opti-
cal observation and spectral confirmation of nanoparticle internalisation. Within these 
optical images AuNPs appear bright due to their high scattering cross section. To con-
firm the presence of AuNPs, the plasmonic resonance properties of gold was detected 
by spectra angle mapping (SAM) using the Cytoviva hyperspectral imaging system. This 
system confirms internalisation and intracellular location by comparing the unknown 
spectra in the acquired hyperspectral image against a user defined spectral library, i.e. 
that of AuNPs. Briefly, 4 × 104 cells were seeded into a 4-well glass chamber slide (Corn-
ing, USA). After 48 h, cells were treated with media containing AuNPs for 24 h, washed 
three times with PBS and fixed using 10% formalin. Under hypoxic conditions cells were 
transferred to a hypoxia chamber (0.5% O2) and incubated for 4 h before a 24 h AuNPs 
treatment, then washed, fixed and imaged.

Seahorse X‑Fe 96 metabolic flux analysis

The bioenergetic function of HPV( − ) HNSCC cells treated with atovaquone was deter-
mined using Seahorse Extracellular Flux analyser (Seahorse Bioscience, MA, USA). In 
brief, 2 × 104 cells per well were seeded into seahorse X-Fe 96-well culture plates and 
incubated overnight to allow attachment. Cells were then washed with pre-warmed 
XF assay DMEM medium for OCR (oxygen consumption rate) measurement. XF assay 
media was supplemented with 10 mM glucose, 1 mM sodium pyruvate, 2 mM L-glu-
tamine and adjusted to pH = 7.4. Cells were maintained in 180  µL/well of XF assay 
media, in a non-CO2 incubator for 1  h. During the incubation period, 20  µL of (150, 
300 µM) diluted in seahorse XF medium was loaded into the injection ports in the XFe-
96 senor cartridge. After establishing a baseline OCR and extracellular acidification rate 
(EACR), atovaquone was administered thorough an automated pneumatic injection 
port. Subsequent changes in OCR and ECAR were monitored over a 3  h period. The 
resulting effects on OCR and ECAR are shown as percentages of the baseline for respec-
tive treatments. For hypoxia OCR and ECAR measurements, all manipulations includ-
ing seahorse analyses, were carried out within a hypoxic chamber at 1% O2.

Clonogenic assays

Clonogenic assays were performed according to our previously published reports [50]. 
In brief, 4 × 105 cells were plated in a 35 mm2 dish and allowed to adhere for 24 h. Cells 
were then treated with 100 µg AuNPs and/or atovaquone for 24 h, then irradiated with 
a single dose of 2, 4 or 6 Gy. For hypoxic studies, cells were seeded and allowed to attach 
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at 37 °C, 5% CO2/95% air overnight before being transferred to hypoxic station with 0.5% 
O2, 5% CO2, 95% nitrogen for 4  h allowing equilibrium. Cells were then treated with 
either AuNPs (100 µg), atovaquone or combination of AuNPs and atovaquone for 24 h, 
prior to radiation treatment at 0.5% O2, 5% CO2. Following radiation treatments, cells 
were washed twice in PBS, trypsinised, counted, and reseeded in 6-well plates before 
incubating for a further 9–14 days under atmospheric oxygen conditions, allowing col-
ony formation. Colonies were then fixed and stained using 70% methanol and 0.4% crys-
tal violet. Colonies with more than 50 cells were counted to determine plating efficiency 
(PE), where PE is defined as the number of colonies formed divided by the number of 
cells seeded. Surviving fractions (SF) were then calculated relative to non-irradiated con-
trols and fitted to the linear quadratic (LQ) equation (Eq. 1).

LQ fits were calculated using least-square regression in prism 9.0 (GraphPad Soft-
ware, CA, USA). The area under the curve (AUC), which represents the mean inactiva-
tion dose (MID), was obtained and the sensitiser enhancement ratio (SER) calculated by 
dividing the MID of non-exposed cells with AuNPs or atovaquone treated cells. α and 
β components have been derived from the linear quadratic fit, representing the ratio of 
either direct (α) and indirect (β) cell damage.

Cell cycle analysis

Cells were seeded in 6-well plates at a density of 8 × 105 cells/well, then incubated 
overnight. The next day growth medium was replaced with fresh medium containing 
atovaquone, AuNPs (100  µg/mL) or the combination of AuNPs and atovaquone for a 
further 24  h. Cells were then irradiated using a single 4  Gy dose and returned to the 
incubator for a further 24 h before fixing. Monodisperse cells were washed in PBS and 
resuspended in 0.5  mL of propidium iodide (containing 50  µg/mL PI and 10  µg/mL 
RNase) for 30 min at 4 °C. Analysis was performed using a BD FACSCalibur flow cytom-
eter. Cell cycle analysis was performed in triplicate with data from a minimum of 10,000 
cells per sample collected. Cell cycle data analysis was performed using FlowJO software.

Cell apoptosis assay

Quantitative analysis of apoptosis was performed by flow cytometry using an Annexin-
FITC-propidium iodide (PI) apoptosis detection kit (BD Biosciences, USA). In short, 
cells were incubated at a density of 2 × 105 cells/well in 6-well plates, and allowed to 
attach for 24  h. Cells were then exposed to either hypoxic (0.5% O2) or atmospheric 
oxygen (21% O2) conditions and treated with medium containing atovaquone, AuNPs 
(100 µg/mL) or the combination of AuNPs and atovaquone for a further 24 h prior to 
radiation treatment. As with cell cycle analysis, apoptosis assays were performed 24 h 
post-radiation treatment. The subsequent procedure was performed in accordance 
with the manufacturer protocol. Briefly, cells were washed twice with cold PBS, then 
suspended in 195 μL binding buffer at a cell density of 5 × 105 cells/mL. After a 10-min 
incubation with 5  μL of Annexin V-FITC, cells were resuspended in 190  μL binding 
buffer including 10  μL of PI. After incubation for 15  min at room temperature in the 

(1)Linear quadratic: S = exp(−αD− βD2)
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dark, samples were analysed by flow cytometry (BD FACSCalibur). Data analysis was 
performed using BD FACSuiteTM software.

DNA damage analysis by immunofluorescence assay

Immunofluorescence assays were performed as described previously [50]. Cells were 
plated in 4-well chamber slides at a density of 4 × 104 cells per well and left to adhere for 
48 h. Cells were then treated with atovaquone (30 μM), and/or AuNPs (100 µg/mL) for 
a further 24 h before IR treatment using a single fraction dose of 2 Gy (Faxtrion CP-160 
Arizona USA). After IR treatment cells were returned to the incubator for either 2 h or 
24 h, allowing partial DNA damage repair. Cells were then washed with PBS and fixed 
with 4% formaldehyde, permeabilised using 0.1% PBS-Tween 20, and blocked with 1% 
BSA for 1 h. Cells were then incubated with primary 53BP1 antibody (1:1000 dilution in 
1% BSA). As indirect immunofluorescence was used, cells were then washed three times 
with PBS for 5 min and incubated with Alexa flour 488 secondary antibody (1:1000 dilu-
tion in 1% BSA) at room temperature in the dark. Finally, cells were washed three times 
with PBS before drying and mounting with DAPI (Abcam, UK). With respect to quan-
tifying residual DNA damage, for each replicate 53BP1 foci from 50 cells per treatment 
were scored.

Statistical analysis

All statistical analysis were performed using GraphPad Prism 9 software. Scientific data 
were expressed as mean ± SEM. For clonogenic assays, two-way analysis of variance 
(ANOVA) was performed with Turkey multiple tests to determine statistical differences 
between treatment groups. For all other experiments, comparisons between multiple 
groups were performed using one-way analysis of variance with Turkey multiple tests. 
Data are shown as statistically significant when p-value of equal to or less than 0.05 were 
recorded.

Results
Cell uptake and location of AuNPs

Intracellular concentration and localisation of AuNPs are two important factors that 
markedly influence tumour cell sensitivity to radiation treatment. AuNP internalisa-
tion was assessed both quantitatively and qualitatively using ICP-AES and hyperspec-
tral imaging. Quantitative assessment of AuNPs uptake demonstrated a clear positive 
correlation with treatment concentration under both hypoxic and normoxic condi-
tions, across all three cell lines tested (Fig. 1). More specifically, AuNPs internalisation 
proved to be significantly (p < 0.01) increased at 100 µg/ml AuNP treatment over 10 µg/
ml or below, an effect consistent to all cell models. Intracellular Au concentrations of 
64 ± 24 pg/cell, 68 ± 17 pg/cell and 75 ± 23 pg/cell, were achieved in FaDu, CAL27 and 
CAL33 cells (Fig. 1a–c), respectively. Hypoxic stress had no obvious impact on AuNP 
uptake, with total intracellular Au levels slightly increased in all three cell lines over cells 
maintained under environmental oxygen conditions (FaDu—86 ± 19  pg/cell, CAL27—
80 ± 2 pg/cell, and CAL33—97 ± 19 pg/cell, respectively).

Intracellular AuNP uptake and localisation was also visualised using hyperspectral 
imaging. Darkfield imaging indicates significant nanoparticle internalisation by the 
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presence of multiple bright focal regions following 24 h nanoparticle treatment. Using 
integrated pixel-by-pixel hyperspectral filtering against the untreated control, false pos-
itive signals are eliminated, producing a spectral angle map (SAM) confirming AuNP 
intracellular locality. At this resolution, predominant AuNP intracellular accumulation 
appears to co-localise within a perinuclear region (Fig. 2), mostly likely within endoplas-
mic reticulum due to endosomal vesicle trafficking. As with quantitative uptake studies, 
similar observations were also observed under hypoxic conditions (Additional file 1: Fig-
ure S1).

Effect of atovaquone on bioenergetic function in HPV( − ) HNSCC cells
Atovaquone mediated inhibition of respiratory capacity would be expected to signifi-
cantly alter the tumour cell metabolic profile, enabling adaption to treatment related 
stress. To test this, we measured the bioenergetic function of FaDu, CAL27 and CAL33 
cells in response to atovaquone using the Seahorse Bioscience XF96 analyser, with 
experiments conducted under 21% O2 and 1% O2. Cells were analysed for both oxygen 
consumption rate (OCR) and extracellular acidification (ECAR—a surrogate readout of 
lactic acid efflux). Atovaquone greatly reduced OCR in all cells under normoxic (Fig. 3) 
and hypoxic (Additional file 1: Figure S2) conditions, with hypoxia notably decreasing 
OCR by roughly 50% in the control group. More specifically, a marked OCR decrease 
was observed in FaDu cells using atovaquone at both 15 and 30  µM under normoxia 
(Fig. 3a), reducing OCR by 76% over untreated controls. A similar degree of OCR sup-
pression was also observed in CAL27 and CAL33 cells (Fig.  3b–c), reducing OCR by 
approximately 80%. Encouragingly, if adopting this strategy to help alleviate hypoxia 
induced radioresistance, a similar pattern was also observed under hypoxic conditions 
following atovaquone treatment (Additional file 1: Figure S2a–c), maximally suppressing 

Fig. 1  Cell uptake of AuNPs in FaDu (a), CAL27 (b) and CAL33 (c) cells under atmospheric (21% O2) or 
hypoxic (0.5% O2) conditions. One-way ANOVA followed by Turkey’s multiple tests was used to compare 
within different concentrations, * p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data were obtained from 
three independent experiments performed in triplicate ± SEM
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OCR by 87.6%. This meant that atovaquone treatment effectively doubled the reduction 
in OCR relative to hypoxia alone, proving effective even under hypoxic conditions.

Parallel to the changes in the mitochondrial respiration, we also observed that 
atovaquone stimulated a concomitant increase in ECAR, indicating a switch to gly-
colytic metabolism, likely compensating for ATP depletion due to respiratory stress. 
Atovaquone elevated the extracellular acidification by 2.3-fold in FaDu cells over 
untreated controls (Fig.  3d). This effect was even more pronounced in CAL27 and 
CAL33 cells, resulting in an approximate fourfold increase in ECAR, irrespective of drug 
concentration (Fig. 3e–f). Under hypoxic conditions, similar effects were also observed 
in all three cell lines tested (Additional file 1: Figure S2), with the greatest effect seen in 
CAL33 cells, yielding a 2.5-fold ECAR increase (Additional file 1: Figure S2f ).

Modified radiation sensitivity using AuNPs and atovaquone

AuNPs are proven radiosensitisers, nevertheless the magnitude of effect is often 
compromised under hypoxic conditions (Jain et  al. 2014). Herein we investigated 
whether AuNPs, which act as both physical and chemical radiation dose modifiers, 
combined with atovaquone, increase the radiosensitivity of HNSCC cells compared 
to either agent alone. In the absence of radiation, AuNP, atovaquone or the combined 
treatment showed no significant toxicity as evidenced by the minimal changes in SF0 

Fig. 2  Intracellular uptake and localisation of AuNPs within FaDu, CAL27 and CAL33 cells under atmospheric 
oxygen conditions using Cytoviva darkfield/hyperspectral imaging. Cells were treated with AuNPs for 24 h, 
fixed and mounted with DAPI before imaging. Representative images include enhanced dark field and the 
corresponding hyperspectral images, overlaid with a spectral angle map (SAM) representing AuNPs in red
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values under both normoxia and hypoxia (Additional file 1: Figure S3). Radiation sur-
vival curves for all treatment groups along with dose enhancement factors (DEF) at 
2 Gy and 4 Gy are provided in Fig. 4 and in the supporting information (Additional 
file 1: Table S1). AuNPs alone significantly sensitised all three cell lines to radiation 
treatment under atmospheric oxygen conditions, producing mean sensitiser enhance-
ment ratios (SER) of 1.37, 1.33 and 1.37 for FaDu (p = 0.0122), CAL27 (p < 0.0001) 
and CAL33 cells (p = 0.0002), respectively. Atovaquone alone significantly increased 
radiation sensitivity in FaDu cells (p = 0.0463), generating a SER of 1.43 (Fig.  4a). 
However, drug alone failed to modulate radiation response in CAL27 and CAL33 
cells (Fig.  4b–c). Using an equivalent concentration of atovaquone combined with 
AuNPs markedly augmented radiation sensitivity (p = 0.0002), yielding an SER of 1.72 
in FaDu, equating to an additional 35% increase in radiation sensitivity over single 
agent treatment with AuNPs alone. Conversely, the combined treatment of AuNP 
and atovaquone failed to significantly enhance radiation sensitivity over AuNPs alone 
in CAL27 and CAL33 cells (Fig.  4b–c), implying that in these cells radiation dose 
enhancement is predominately mediated by AuNPs. Interestingly, in an era where 
hypofractionation and stereotactic radiotherapy are increasingly pushing the clini-
cal limits of dose fractionation, the radiosensitising potential of combining these two 

Fig. 3  Bioenergetic profile of HNSCC cells treated with atovaquone (AQ) under 21% O2. Changes in oxygen 
consumption rate (OCR) and extracellular acidification rate (ECAR) were monitored at 37 °C for 3 h. The 
resulting effect of atovaquone on OCR and ECAR is shown as a percentage of the baseline measurement after 
each treatment. Data shown are the means ± SEM (n = 5 per treatment group)
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agents appear to increase with dose, evidenced by an increased DEF of 2.64 at 4 Gy in 
FaDu cells (Additional file 1: Table S1).

The radiosensitising effect for the combined use of AuNPs and atovaquone was also 
investigated under hypoxic conditions. Unsurprisingly, hypoxia severely impaired radia-
tion sensitivity, with an approximate oxygen enhancement ratio (OER) of 2, indicating 
that hypoxia was maintained during radiation treatment, and that hypoxia induced radi-
oresistance was observed. Encouragingly, under hypoxic conditions, the combination of 
AuNP and atovaquone again resulted in a significant (p = 0.049) increase in FaDu radio-
sensitivity (SER 2.1) over treatment with AuNP alone (Fig. 4f ). As observed under nor-
moxia, atovaquone alone failed to significantly modulate the response to radiotherapy in 
CAL27 and CAL33 cells, an effect recapitulated in the combined treatment group.

Effect of AuNP and atovaquone treatment on cell cycle distribution

To explore further the potential mechanism underpinning AuNP/atovaquone radio-
sensitisation, the effect of treatment on cell cycle distribution was evaluated. Com-
binations of AuNP and atovaquone induced a significant (p < 0.05) increase in the 
ratio of S-phase FaDu cells under 21% O2 (Fig.  5a, Additional file  1: Fig S4a). Fur-
thermore, combined with a 4 Gy radiation dose, atovaquone significantly (p = 0.014) 

Fig. 4  Clonogenic radiation survival curves for FaDu (a and d), CAL27 (b and e) and CAL33 (c and f) cells 
treated with either AuNPs (100 μg), atovaquone (AQ, 30 μM) or the combination of both under normoxic 
(a, b and c) and hypoxic (d, e and f) conditions. Two-way ANOVA with Turkey multiple comparison test was 
used to compare within different treatments. Significant differences are represented by *p < 0.05, **p < 0.01, 
***p < 0.001. Data were obtained from three independent experiments performed in triplicate ± SEM
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decreased the G0/G1 population compared to AuNPs + 4  Gy treated cells, from 55 
to 18% (p = 0.0143). This response drove a concomitant increase in the proportion 
of G2/M cells, doubling from 20.7% to 40.6% (p = 0.0141), Despite that no signifi-
cant difference in clonogenic cell survival was observed in CAL33 cells, similar sig-
nificant (p = 0.0216) drug/nanoparticle induced alterations in cell cycle distribution 
were observed, with a > 10% increase in G2/M accumulation following atovaquone 
and radiation (Fig. 5c and Additional file 1: Fig S4a), an effect that was surprisingly 
impaired (42.9% to 15.9% (p < 0.001)) when AuNPs were added to the treatment com-
bination. No statistically significant cell cycle alterations were observed in CAL27 
cells irrespective of treatment (Fig.  5b and Additional file  1: Fig S4a). In a similar 
manner, under hypoxia, the various combinations of atovaquone/AuNP treatment 
had minimal impact on cell cycle distribution (Fig.  5d–e, and Additional file  1: Fig 

Fig. 5  Cell cycle distribution of HNSCC cells 24 h after treatment with AuNPs (100 μg) and/or atovaquone 
(AQ 30 μM), alone or in combination with radiation (4 Gy) under both 21% O2 and hypoxic conditions (0.5% 
O2). One-way ANOVA followed by Turkey’s multiple tests was used to compare within different treatments, 
significant differences are represented by *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data were obtained 
from three independent experiments performed in triplicate ± SEM
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S4b), except that we again observed a significant decrease in the G2/M population of 
CAL33 cells following the combination treatment (Fig. 5f ) (p = 0.0126).

Effects of AuNPs and atovaquone inhibitor treatment in apoptosis induction

Apoptosis significantly contributes to radiation-induced cell death (Rupnow and Knox 
1999; Dewey et al. 1995; Verheij and Bartelink 2000). In the current study, the apoptotic 
response of HNSCC cells in response to atovaquone, AuNPs or the combination with 
and without radiation was evaluated using Annexin-FITC/PI staining (Fig. 6 and Addi-
tional file 1: Fig S5). Unsurprisingly, the combined treatment with radiation induced the 
highest proportion of apoptotic cells in all cells tested, proving statistically significant 
in FaDu (27%, p < 0.01—Fig.  6a) and CAL27 cells (25%, p = 0.012—Fig.  6b) compared 
to either AuNP or atovaquone as a monotherapy combined with radiation. In CAL33 
cells the magnitude of response was similar, although not significant, with the observed 
increase in apoptosis predominantly driven by atovaquone (Fig. 6c). Interestingly, under 

Fig. 6  Annexin V/PI staining for apoptosis in FaDu (a, d), CAL27 (b, c) and CAL33 (e, f) cells treated with 
AuNPs (100 μg), atovaquone (AQ 30 μM) or radiation (4 Gy) or the combination. Cells were maintained under 
atmospheric oxygen conditions (21% O2—panels a, b and c) or hypoxia (0.5% O2—panels d, e and f). Data 
presented are from at least three independent replicates performed in triplicate ± SEM. One-way ANOVA 
followed by Tukey’s multiple comparisons test was used to compare within different treatments, significant 
differences are represented by *p < 0.05, **p < 0.01, respectively
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hypoxia there was a trend towards increased basal apoptosis, likely triggered by hypoxia 
induced stress, with the overall combination effect of atovaquone and AuNP strongly 
attenuated (Fig. 6d–f) across all three cell lines.

Effects of AuNPs and atovaquone treatment on the induction of DNA DSBs

As DNA damage is the primary mechanism by which radiation triggers cell death, we 
next aimed to investigate if the combined effect of atovaquone and AuNP with radia-
tion treatment increased DNA damage yields or interfered with DNA damage repair. 
53BP1 foci were scored and used as a surrogate marker of DNA double strand breaks 
2  h and 24  h post-radiation treatment. Figure  7a is representative images of FaDu 
53BP1 foci. Radiation combined with either AuNP or atovaquone appeared to increase 

Fig. 7   (a) Representative immunofluorescence images of 53BP1 foci in FaDu cells 24 h post-radiation (2 Gy) 
under 21% O2 and 0.5% O2. Cells were treated with either AuNPs (100 μg), atovaquone (AQ 30 μM) or the 
combination. Panels b and c represent the mean 53BP1 foci 24 h post-radiation (0 or 2 Gy) in FaDu cells after 
treatment with AuNPs, atovaquone or the combination under atmospheric oxygen levels (b) and hypoxia 
(c). Data presented are from at least three independent replicates performed in triplicate ± SEM. One-way 
ANOVA followed by Turkey’s multiple comparison test was used to compared within different treatment. * 
represents significant difference at p < 0.05, ** at p < 0.01, *** at p < 0.001
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residual 53BP1 foci compared to 2 Gy alone, an effect that was augmented using com-
bined AuNP/atovaquone, significantly (p = 0.0124) increasing residual DNA damage 
yields by 31% over radiation alone. Similar effects were also seen in CAL33 cells (Addi-
tional file  1: Figure S6), where the combination significantly (p = 0.0338) attenuated 
DNA damage over AuNPs alone, increasing unresolved DNA damage yields by 60%. 
This response was not observed in CAL27 cells (Additional file 1: Figure S7).

Hypothesising that reduced oxygen consumption would increase intracellular oxy-
gen levels, therefore leading to further DNA damage, we next assessed the impact of 
the combined treatment on radiation-induced DNA damage under hypoxia at both 2 h 
and 24 h post-radiation. Additional file 1: Figure S8 shows representative and quantified 
data of 53BP1 foci in FaDu, CAL27 and CAL33 cells. The radiation treatment induced a 
significant increase in DNA damage, producing 15.6 ± 1.7, 12.0 ± 2.8 and 13.6 ± 3.9 for 
FaDu, CAL27 and CAL33 cells, respectively. Interestingly, the combined treatment with 
radiation and atovaquone further enhanced DNA damage yields over radiation alone, 
increasing double strand break formation by 47%. Figure 7 a&c are representative images 
and quantified data of 53BP1 foci in FaDu cells under 0.5% O2, only this time 24 h post-
irradiation, allowing time for DNA damage repair. Surprisingly, the mean residual DNA 
damage yields were elevated in the combination treatment, again by exactly 47%, indi-
cating that the combination treatment increases DNA damage rather than interfering 
with DNA damage repair. In CAL27 and CAL33 cells, the combination of atovaquone 
and AuNPs plus radiation only slightly increased DNA DSB yields (Additional file 1: Fig-
ures S6, S7), failing to prove statistically significant.

Discussion
In the current study, AuNPs have been explored as an experimental radiosensitiser to 
enhance the biological effectiveness of conventional photon therapy due to their desir-
able physical and chemical properties (Cui et al. 2017; Choi et al. 2020) Various existing 
in vitro and in vivo studies have demonstrated the potential of AuNPs as effective radio-
sensitisers, capable of achieving dose enhancements comparable to those of approved 
radiosensitisers in routine clinical practice (López-Valverde et al. 2022; Khoo et al. 2017) 
However, clinical translation of AuNPs has been slow, attributed to several reasons 
including less well understood PK/PD properties over conventional small molecules, 
poor target cell internalisation and inconsistent impacts on redox activity, rendering 
these experimental agents less effective under hypoxic conditions(Jain et  al. 2014; Cui 
et al. 2014). To overcome this challenge, we present a relatively unexplored strategy for 
increasing the radiosensitisation of AuNPs through the combined use of AuNPs with 
atovaquone, a metabolic modulator which could lead to increased tumour radiosensi-
tivity through improved oxygenation. This approach could constitute a novel strategy 
in which tumour radiation sensitivity is improved secondary to metabolic remodelling 
rather than by altering intrinsic radiosensitivity.

AuNPs internalisation was concentration-dependent, displaying a clear positive cor-
relation with treatment concentration under both normoxic and hypoxic conditions 
(Fig. 1). Of note, AuNP uptake under hypoxic conditions was at least comparable if not 
greater than that observed under aerobic conditions, indicating that hypoxic stress does 
not present a barrier to active AuNP internalisation. Indeed, emerging evidence suggests 
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that prolonged hypoxic exposure increases the retention of AuNPs within cells due to a 
reduction in intracellular vesicle trafficking and exocytosis (Neshatian et al. 2015). Dif-
ferences in the NPs uptake are largely determined by specific cellular processes including 
endocytosis, exocytosis and autophagy (Chithrani et al. 2006; Gao et al. 2005; Chithrani 
and Chan 2007). When nanoparticles enter cells by receptor-mediated endocytosis, nor-
mally they remain constrained within endosomes prior to lysosomal fusion, degradation, 
and exocytosis. Prolonged hypoxic exposure results in a reduction in the supply of nutri-
ents and energy, suppressing energy dependent processes such as autophagy and exocy-
tosis (Shorer et al. 2005; Ma et al. 2011). Our results are consistent with findings which 
report that prolonged hypoxic exposure results in higher AuNP uptake in MCF-7 and 
HeLa cells, compared to equivalent normoxic conditions.(Neshatian et al. 2015) Another 
plausible explanation is due to an increase in AuNP agglomeration under hypoxic con-
ditions. Hypoxia, and in particular anaerobic metabolism is recognised as a common 
feature of most solid tumours, increasing extracellular lactic acid levels. This metabolic 
effect elevates the stromal pH of the tumour microenvironment, exposing AuNPs to 
environmental conditions that favour agglomeration.(Neshatian et  al. 2015; Sonveaux 
et al. 2008).

“Metabolic radiosensitisation” is conceptually based on altering the metabolic demand 
for oxygen consumption primarily by downregulating mitochondrial oxidative metabo-
lism (Ashton et al. 2018). Increasing evidence suggests that decreasing oxygen consump-
tion contributes to a reduction in hypoxia induced radioresistance (Ashton et al. 2016; 
Mey et al. 2018); Atovaquone targets and inhibits the function of mitochondrial complex 
III, as such we selected this anti-malarial drug to assess its ability to modulate radia-
tion sensitivity. Our results demonstrate that atovaquone efficiently and rapidly (within 
two hours) suppresses OCR across all three cell lines, corroborating observations from 
existing reports in alternative tumour models.(Kapur et al. 2022; Ashton et al. 2016) We 
also observed that atovaquone concomitantly triggered an increase in ECAR (Fig. 3d–f), 
indicating increased glycolytic function in response atovaquone mediated suppression 
of ATP production via oxidative phosphorylation. Such metabolic flexibility enables acti-
vation of various signalling pathways, compensating for loss of critical functions such 
as electron transport chain function, ultimately enabling survival under nutrient/oxy-
gen deprivation. Additionally, the metabolic shift from oxidative metabolism to anaer-
obic glycolysis is recognised as contributing to undesirable effects with respect to the 
response to the radiotherapy, through elevated DNA damage repair and cancer stem cell 
enrichment (Bhatt et al. 2015; Li et al. 2016). Given the recognised role which glycolysis 
confers in mediating therapeutic resistance, glycolysis inhibitors could be used in combi-
nation with atovaquone to maximise the sensitising effect of these compounds in future 
studies.

AuNPs yielded significant positive radiation dose modifying effects in all three tumour 
cell models tested. Hypoxia is recognised as the main driver for the development of radi-
oresistance via a series of mechanism, including impaired oxygen fixation at the time of 
radiation delivery, changes in cell cycle regulation, and/or the induction of anti-apop-
totic genes (Boulefour et al. 2021). However, in our study, we found that hypoxic (0.5% 
O2) cells were still sensitised to radiation by AuNPs. AuNP uptake is recognised as a key 
factor influencing radiosensitising potential. Zhang et al. (2008) highlighted the role of 



Page 17 of 23Feng et al. Cancer Nanotechnology           (2023) 14:33 	

surface functional groups on prostate cancer radiosensitivity comparing the uptake and 
radiosensitivity of thiol-glucose-capped AuNPs (Glu-AuNPs) and the neutral AuNPs 
(TGS-AuNPs), demonstrating that Glu-AuNPs resulted in a threefold increase in nano-
particle internalisation over TGS-AuNPs (Zhang et al. 2008). In keeping with the asser-
tion that more intracellular gold results in greater radiosensitisation, Glu-AuNPs were 
more than twofold more effective when combined with radiotherapy compared with 
TGS-AuNPs. Our qualitative study using hyperspectral microscopy demonstrated that 
prolonged hypoxic exposure does not impair the nanoparticle uptake, nor differentially 
influence intracellular localisation (Fig. 1 and Additional file 1: Fig S1). Taken together, 
our quantitative and qualitative study of AuNPs uptake provide a solid rationale for 
AuNPs mediated radiosensitisation under hypoxic conditions.

The colony forming assay was used to establish both the direct impact of each indi-
vidual component treatment on viability both ± radiation. Importantly, in the absence 
of radiation, neither AuNP treatment, atovaquone or combined AuNP/atovaquone 
treatment had any significant impact on colony formation, indicating that subsequent 
radiosensitisation effects are indeed a synergistic interaction as opposed to cumula-
tive toxicity resulting from individual components (Additional file 1: Figure S3). Inter-
estingly, treatment with atovaquone alone resulted in radiosensitisation in FaDu cells, 
leading to a significant increase in radiosensitivity (Fig. 4a), with greater effects observed 
when combined with AuNPs. More encouragingly, at the clinically relevant dose of 2 Gy, 
the combination of AuNPs and atovaquone significantly increased cell killing compared 
to radiation alone, producing a dose enhancement factor (DEF) of 1.5 over radiation 
alone (Additional file 1: Table S1). Similarly, the combination treatment also yielded the 
greatest effect under hypoxia (Additional file 1: Table S2), generating a mean DEF2Gy of 
1.25. In a clinical setting, dose enhancement on this scale could enable dose de-esca-
lation helping to spare surrounding normal tissue from the adverse off-target effect of 
radiotherapy, or conversely if retaining an equivalent treatment plan markedly reduce 
the risk of treatment failure.

Next, we investigated the effect of combined AuNP and atovaquone treatment on cell 
cycle distribution, apoptosis and radiation-induced DNA damage repair. As outlined 
above, AuNP radiosensitisation is predominantly attributed to physical interactions 
between photons and high-Z material.(Carter et  al. 2007; Ghita et  al. 2017) However, 
growing evidence suggests that AuNPs may also contribute to biological responses that 
arise following radiation interaction.(Rosa et al. 2017) At present, four potential mech-
anisms contributing to the biological influence on AuNP radiosensitisation have been 
proposed including: cell cycle synchronisation, increased production of ROS and oxi-
dative stress, DNA damage induction and an enhanced radiation bystander effect.(Rosa 
et  al. 2017); Roa et  al. (2009) demonstrated AuNP mediated cell cycle acceleration 
through G0/G1 with an accumulation of cells in G2/M via the activation of CDK kinase 
(Roa et al. 2009). The consequences of CDK activation were shown to deliver striking 
radiosensitisation, suggesting that cell cycle synchronisation played an important role 
in mediating such effect. Similarly, Geng et  al. (2011) found that thiol-glucose coated 
AuNPs promoted G2/M accumulation, contributing to an enhanced SKOV-3 cell sensi-
tivity against MV X-ray radiation.(Geng et al. 2011) The current study demonstrated that 
combined AuNPs and atovaquone treatment induced normoxic S-phase accumulation 
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(Fig.  5a). The sensitivity and subsequent biological impact of radiation is highly cell 
cycle dependent, with G2/M recognised as the most sensitive phase to radiation (Pawlik 
and Keyomarsi 2004). Herein, the increase of S-phase cells appears to positively corre-
late with the radiosensitising effect, however, a mechanism for S-phase arrest remains 
unknown. Preliminary work suggests that functionality of the master tumour suppres-
sor gene TP53 is believed to play a key role in mediating S-phase specific cell death 
(Ostruszka and Shewach 2000). All three cell lines used in the current study are TP53 
mutant, therefore, these cells do not possess a competent G1-S cell cycle checkpoint. As 
such, cell cycle progression is not stalled, limiting the opportunity for an increase in p21 
to resolve or repair the damaged DNA. The ability to progress through cell cycle after 
radiation-induced damage is thought to synergistically enhance cell death, presenting 
a biological mechanism of radiosensitisation.(Bélanger et al. 2014) As S-phase cells are 
considered more radioresistant than G1-S or G2-M cells, it can therefore be concluded 
that the radiosensitising effects caused by the combination of AuNPs and atovaquone 
are unlikely to be directly linked to the redistribution of cells to a more radiosensitive 
cell cycle phase (Pawlik and Keyomarsi 2004). Despite this, increased S-phase radiosen-
sitivity is not unique to the current study. Kuno and Shinomiya (2000) demonstrated 
enhanced S-phase tumour killing activity following the treatment with the hypoxic 
radiosensitiser (PR-000350) (Kuno and Shinomiya 2000). Additionally, S-phase specific 
apoptosis is directly associated with a defect in nucleotide excision repair (NER), an 
important DNA damage repair process. Bélanger et  al. (2014) reported that defective 
NER during S-phase increases apoptosis and reduces clonogenic survival in human mel-
anoma cell lines following UV radiation treatment, an effect is mediated via the dimin-
ished activation of ataxia telangiectasia and Rad 3-related (ATR) kinase (Bélanger et al. 
2014).

As S-phase specific death is linked to the activation of apoptosis, we also investi-
gated the combined treatment effect of AuNPs and atovaquone on apoptotic fraction 
(Ray et al. 2007). Surprisingly, our work indicated that at the doses used atovaquone, 
AuNP or radiation alone did not significantly increase the apoptotic fraction, despite 
observing increased clonogenic radiosensitisation. This could likely be explained by 
delayed radiation cell death due to mitotic catastrophe. Firat et  al. (2011) reported 
similar findings in a stem-like glioma cell (SLGCs) model that failed to trigger apop-
tosis four days after exposure to a single 10 Gy dose.(Firat et al. 2011) However, four 
days post-radiation treatment 50% of the SLGCs tumours treated with 5 Gy or more 
observed delayed cell death. This effect was predominantly associated with cells 
lacking wild type TP53, attributing cell death to mitotic catastrophe. This finding 
highlights the important role of p53 in regulating the response to genotoxic dam-
age. Interestingly, the combined effect of atovaquone, AuNP and radiation did sig-
nificantly trigger the apoptosis in FaDu and CAL27 cells, within a comparatively short 
experimental timeframe. Gao et  al. (2018) demonstrated that atovaquone signifi-
cantly induced apoptosis in a concentration-dependent manner, inhibiting both cell 
proliferation and angiogenesis in vivo (Gao et al. 2018). Furthermore, Fu et al. (2020) 
reported that atovaquone triggers apoptosis in EpCAM+CD44+  tumour initiating 
HCT116 cells under hypoxia (Fu et  al. 2020). Here we observed that AuNPs treat-
ment alone is not enough to elicit strong apoptotic response, however, the apoptotic 
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fraction was increased following the combination treatment (Fig.  6a). This implies 
that stress caused by the inhibition of mitochondrial respiration by atovaquone may 
prime cells toward radiation-induced apoptosis.

Impaired DNA damage repair is another fundamental process that may contribute to 
the observed effects. Our data indicate that combined AuNPs and atovaquone results 
in more DNA damage at 2 and 24  h post treatment compared to cells treated with 
AuNP alone (Fig. 7 and Additional file 1: Fig S8). This effect is consistent with a previous 
report that 50 nm citrate capped AuNPs induce significant radiosensitisation in HeLa 
cells (Chithrani et al. 2010). To date, there are no direct studies evaluating DNA damage 
levels after atovaquone and radiation treatment. However, some reports suggests that 
atovaquone exhibits antitumour effects by increasing DNA damage. Ashton et al. (2016) 
reported that atovaquone increased radiosensitivity by inhibiting pyrimidine synthesis, 
thus negatively impacting both DNA damage repair and replication. Additionally, Gao 
et  al. (2018) showed that atovaquone inhibits hepatoma cell proliferation by inducing 
double stranded DNA breaks, which contribute to the sustained ataxia -telangiectasia 
mutated (ATM) activation, and downstream molecules including cell cycle checkpoint 
kinase-2 (CHK2) and H2AX (Gao et  al. 2018). In our work, we consistently observed 
a significant increase in the induction of lethal DNA double strand breaks (DSBs) after 
treatment with the combination of AuNP and atovaquone at both 2 h and 24 h (Fig. 7 
and Additional file  1: Fig S8), an effect consistent with our clonogenic survival data. 
Interestingly, we observed that combination of atovaquone and AuNPs induce 47% 
increase in the yield of DSB induction for both initial (2 h) and residual damage (24 h) 
under hypoxia, indicating that the enhanced radiosensitivity from the combination of 
AuNPs and atovaquone may be due to the induction of greater DNA damage rather than 
negatively impacting the DNA damage repair process.

Conclusions
Overall, this work demonstrates the potential of combining AuNPs and atovaquone as 
a novel approach to enhance the radiotherapeutic effect in HPV( −  ) HNSCC. Treat-
ment with atovaquone greatly reduced oxygen consumption in HNSCC cells, inducing 
a shift to a more glycolytic type, providing the basis for metabolic radiosensitisation. 
This approach appears to complement physical radiosensitisation conferred by AuNPs, 
inducing S-phase accumulation, contributing to greater DNA damage yields. Impor-
tantly, the combination results in superior radiotherapeutic effects compared to either 
agent alone. While this work provides a strong rationale for the combined use of physi-
cal and metabolic radiosensitisers, clinical translation will require careful consideration 
of critical parameters such as route of administration to avoid enhanced radiosensitiv-
ity of surrounding normal tissue. Given that external beam radiotherapy is delivered in 
a highly conformal manner, tumour specific radiosensitisation is by default achieved 
through accurate radiotherapy delivery. Furthermore, by adopting direct intra-tumoural 
injection as the means of delivery, the risk of off-target nanoparticle radiosensitisation 
can be further mitigated against. Indeed, this is the approach utilised by successful radi-
osensitising clinical studies using hafnium oxide nanoparticles, and in our opinion the 
option most likely to ultimately deliver clinical benefit from similar nanotechnologies.
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 Additional file 1: Table S1. Sensitiser enhancement ratio (SER) and dose enhancement factor (DEF) of HNSCC cells 
after treatment with AuNPs, atovaquone alone or the combination under normoxia (21% O2). SER represents area 
under curve versus radiation only whilst DEF value demonstrates radiation enhancement at a single dose point 
versus radiation only. α and β component of linear quadratic has also been presented. Table S2. Sensitiser enhance-
ment ratio (SER) and dose enhancement factor (DEF) of HNSCC cell after treatment with AuNPs, atovaquone alone 
or the combination under hypoxia (0.5% O2). SER represents area under curve versus radiation only whilst DEF value 
demonstrates radiation enhancement at a single dose point versus radiation only. α and β component of linear 
quadratic has also been presented. Figure S1. Intracellular uptake and localisation of AuNPs within FaDu, CAL27 and 
CAL33 cells under hypoxia (0.5% O2) using Cytoviva darkfield/hyperspectral imaging. Cells were treated with AuNPs 
for 24 h, fixed and mounted with DAPI before imaging. Representative images include enhanced dark field and the 
corresponding hyperspectral images, overlaid with a spectral angle map (SAM) representing AuNPs in red. Figure 
S2. Bioenergetic profile of HNSCC cells treated with atovaquone under hypoxic (0.5% O2) conditions. Changes in 
oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were monitored at 37 °C for 3 h. The 
resulting effect of atovaquone on OCR and ECAR were shown as a percentage of the baseline measurement after 
each treatment. Data shown are the means ± SEM (n=5 per treatment group). Figure S3. SF0 value of FaDu, CAL27 
and CAL33 cells after treatment with AuNPs (100 μg) and/or atovaquone (AQ 30 μM) alone or in combination under 
both normoxia (21% O2) and hypoxia (0.5% O2). Figure S4. Flow cytometry analysis for cell cycle distribution of 
FaDu, CAL27 and CAL33 cells using propidium staining after treatment with AuNPs (100 μg) and/or atovaquone (AQ 
30 μM) alone or in combination with radiation (4 Gy) under both normoxic (a) and hypoxic conditions (b). Experi-
ments were performed in triplicate. Figure S5. Representative Annexin-V/-FITC/PI flow cytometry analysis of FaDu, 
CAL27 and CAL33 cells after treatment with AuNPs (100 μg) and/or atovaquone (AQ 30 μM) alone or in combination 
with radiation (4 Gy) under both normoxic (a) and hypoxic conditions (b). Experiments were performed in triplicate. 
Figure S6. A Representative immunofluorescence images of 53BP1 foci in CAL33 cells 24 h post radiation (2 Gy) 
under normoxia (21% O2) and hypoxia (0.5% O2). Cells were treated with either with AuNPs (100 μg), atovaquone 
(AQ, 30 μM) or the combination. Panels b and c represent mean 53BP1 foci 24 h post radiation (0 or 2 Gy) in 
CAL33 cells after treatment with AuNPs, atovaquone or the combination under normoxia (b) and hypoxia (c). Data 
presented are from at least three independent replicates performed in triplicates ± SEM. One way ANOVA followed 
by Turkey’s multiple comparison test was used to compared within different treatment. * represents significant dif-
ference at p<0.05, ** at p<0.01, *** at p<0.001. Figure S7. A Representative immunofluorescence images of 53BP1 
foci in CAL27 cells 24 h post radiation (2 Gy) under normoxia (21% O2) and hypoxia (0.5% O2). Cells were treated 
with either with AuNPs (100 μg), atovaquone (AQ, 30 μM) or the combination. Panel b and c represent mean 53BP1 
foci 24 h post radiation (0 or 2 Gy) in CAL27 cells after treatment with AuNPs, atovaquone or the combination under 
normoxia (b) and hypoxia (c). Data presented are from at least three independent replicates performed in triplicates 
± SEM. One way ANOVA followed by Turkey’s multiple comparison test was used to compared within different 
treatment. *Represents significant difference at p<0.05. Figure S8. A Representative immunofluorescence images of 
53BP1 foci in FaDu, CAL27 and CAL33 cells 2 h post radiation (2 Gy) under hypoxia (0.5% O2). Cells were treated with 
either with AuNPs (100 μg), atovaquone (AQ, 30 μM) or the combination. Panel b, c and d represent mean 53BP1 foci 
24 h post radiation (0 or 2 Gy) in FaDu (b), CAL27 (c) and CAL33 (d) cells after treatment with AuNPs, atovaquone or 
the combination under hypoxia. Data presented are from at least three independent replicates performed in tripli-
cates ± SEM. One way ANOVA followed by Turkey’s multiple comparison test was used to compared within different 
treatment. **Represents significant difference at p<0.01.
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