Allain LR, Vo-Dinh T. Surface-enhanced Raman scattering detection of the breast cancer susceptibility gene BRCA1 using a silver-coated microarray platform. Anal Chim Acta. 2002;469:149–54. doi:10.1016/S0003-2670(01)01537-9.
Article
Google Scholar
Altunbek M, Kuku G, Culha M. Gold nanoparticles in single-cell analysis for surface enhanced Raman scattering. Molecules. 2016. doi:10.3390/molecules21121617.
Google Scholar
Alvarez-Puebla R, Liz-Marzán LM, García de Abajo FJ. Light concentration at the nanometer scale. J Phys Chem Lett. 2010;1:2428–34. doi:10.1021/jz100820m.
Article
Google Scholar
Alvarez-Puebla RA. Effects of the excitation wavelength on the SERS spectrum. J Phys Chem Lett. 2012;3:857–66. doi:10.1021/jz201625j.
Article
Google Scholar
Alvarez-Puebla RA, Contreras-Cáceres R, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM. Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew Chem Int Ed. 2009;48:138–43. doi:10.1002/anie.200804059.
Article
Google Scholar
Andreou C, Neuschmelting V, Tschaharganeh D-F, Huang C-H, Oseledchyk A, Iacono P, Karabeber H, Colen RR, Mannelli L, Lowe SW, Kircher MF. Imaging of liver tumors using surface-enhanced raman scattering nanoparticles. ACS Nano. 2016;10:5015–26. doi:10.1021/acsnano.5b07200.
Article
Google Scholar
Baena JR, Lendl B. Raman spectroscopy in chemical bioanalysis. Curr Opin Chem Biol. 2004;8:534–9. doi:10.1016/j.cbpa.2004.08.014.
Article
Google Scholar
Bao C, Beziere N, del Pino P, Pelaz B, Estrada G, Tian F, Ntziachristos V, de la Fuente JM, Cui D. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small. 2013;9:68–74. doi:10.1002/smll.201201779.
Article
Google Scholar
Barbé C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G. Silica particles: a novel drug-delivery system. Adv Mater. 2004;16:1959–66. doi:10.1002/adma.200400771.
Article
Google Scholar
Bodelon G, Montes-García V, Fernández-Lõpez C, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM. Au@pNIPAM SERRS tags for multiplex immunophenotyping cellular receptors and imaging tumor cells. Small. 2015;11:4149–57. doi:10.1002/smll.201500269.
Article
Google Scholar
Bohndiek SE, Wagadarikar A, Zavaleta CL, Van De Sompel D, Garai E, Jokerst JV, Yazdanfar S, Gambhir SS. A small animal Raman instrument for rapid, wide-area, spectroscopic imaging. Proc Natl Acad Sci USA. 2013;110:12408–13. doi:10.1073/pnas.1301379110.
Article
Google Scholar
Catala C, Mir-Simon B, Feng X, Cardozo C, Pazos-Perez N, Pazos, E, Gómez-de Pedro S, Guerrini L, Soriano A, Vila J. Online SERS quantification of Staphylococcus Aureus and the application to diagnostics in human fluids. Adv Mater Technol. 2016;1:1600163. doi:10.1002/admt.201600163.
Chen H, Shao L, Li Q, Wang J. Gold nanorods and their plasmonic properties. Chem Soc Rev. 2013;42:2679–724. doi:10.1039/C2CS35367A.
Article
Google Scholar
Chen S, Bao C, Zhang C, Yang Y, Wang K, Chikkaveeraiah BV, Wang Z, Huang X, Pan F, Wang K, Zhi X, Ni J, de la Fuente JM, Tian J. EGFR antibody conjugated bimetallic Au@Ag nanorods for enhanced SERS-based tumor boundary identification, targeted photoacoustic imaging and photothermal therapy. Nano Biomed Eng. 2016;8:315–28. doi:10.5101/nbe.v8i4.p315-328.
Article
Google Scholar
Chourpa I, Lei FH, Dubois P, Manfait M, Sockalingum GD. Intracellular applications of analytical SERS spectroscopy and multispectral imaging. Chem Soc Rev. 2008;37:993–1000. doi:10.1039/B714732P.
Article
Google Scholar
Conde J, Bao C, Cui D, Baptista PV, Tian F. Antibody-drug gold nanoantennas with Raman spectroscopic fingerprints for in vivo tumour theranostics. J Control Release. 2014;183:87–93. doi:10.1016/j.jconrel.2014.03.045.
Article
Google Scholar
Cui Y, Zheng XS, Ren B, Wang R, Zhang J, Xia NS, Tian ZQ. Au@organosilica multifunctional nanoparticles for the multimodal imaging. Chem Sci. 2011;2:1463–9. doi:10.1039/c1sc00242b.
Article
Google Scholar
Dinish US, Balasundaram G, Chang YT, Olivo M. Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci Rep. 2014. doi:10.1038/srep04075.
Google Scholar
Dinish US, Song Z, Ho CJH, Balasundaram G, Attia ABE, Lu X, Tang BZ, Liu B, Olivo M. Single molecule with dual function on nanogold: biofunctionalized construct for in vivo photoacoustic imaging and SERS biosensing. Adv Funct Mater. 2015;25:2316–25. doi:10.1002/adfm.201404341.
Article
Google Scholar
Fabris L. SERS tags: the next promising tool for personalized cancer detection? ChemNanoMat. 2016;2:249–58. doi:10.1002/cnma.201500221.
Article
Google Scholar
Feliu N, Sun X, Alvarez Puebla RA, Parak WJ. Quantitative particle–cell interaction: some basic physicochemical pitfalls. Langmuir. 2017. doi:10.1021/acs.langmuir.6b04629.
Google Scholar
Gao Y, Li Y, Chen J, Zhu S, Liu X, Zhou L, Shi P, Niu D, Gu J, Shi J. Multifunctional gold nanostar-based nanocomposite: synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation. Biomaterials. 2015;60:31–41. doi:10.1016/j.biomaterials.2015.05.004.
Article
Google Scholar
Garai E, Sensarn S, Zavaleta CL, Loewke NO, Rogalla S, Mandella MJ, Felt SA, Friedland S, Liu JTC, Gambhir SS, Contag CH. A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS ONE. 2015;10:e0123185. doi:10.1371/journal.pone.0123185.
Article
Google Scholar
Gerami P, Jewell SS, Morrison LE, Blondin B, Schulz J, Ruffalo T, Matushek Iv P, Legator M, Jacobson K, Dalton SR, Charzan S, Kolaitis NA, Guitart J, Lertsbarapa T, Boone S, LeBoit PE, Bastian BC. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol. 2009;33:1146–56. doi:10.1097/PAS.0b013e3181a1ef36.
Article
Google Scholar
González-Solís JL, Luévano-Colmenero GH, Vargas-Mancilla J. Surface enhanced Raman spectroscopy in breast cancer cells. Laser Ther. 2013;22:37–42. doi:10.5978/islsm.13-OR-05.
Article
Google Scholar
Gown AM. Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol. 2008;21:S8–15. doi:10.1038/modpathol.2008.34.
Article
Google Scholar
Gu P, Zhao YZ, Jiang LY, Zhang W, Xin Y, Han BH. Endobronchial ultrasound-guided transbronchial needle aspiration for staging of lung cancer: a systematic review and meta-analysis. Eur J Cancer. 2009;45:1389–96. doi:10.1016/j.ejca.2008.11.043.
Article
Google Scholar
Henry A-I, Sharma B, Cardinal MF, Kurouski D, Van Duyne RP. Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging. Anal Chem. 2016;88:6638–47. doi:10.1021/acs.analchem.6b01597.
Article
Google Scholar
Hoonejani MR, Pallaoro A, Braun GB, Moskovits M, Meinhart CD. Quantitative multiplexed simulated-cell identification by SERS in microfluidic devices. Nanoscale. 2015;7:16834–40. doi:10.1039/C5NR04147C.
Article
Google Scholar
Howes PD, Chandrawati R, Stevens MM. Colloidal nanoparticles as advanced biological sensors. Science. 2014;346:1247390. doi:10.1126/science.1247390.
Article
Google Scholar
Hu C, Shen J, Yan J, Zhong J, Qin W, Liu R, Aldalbahi A, Zuo X, Song S, Fan C, He D. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. Nanoscale. 2016;8:2090–6. doi:10.1039/C5NR06919J.
Article
Google Scholar
Huang R, Harmsen S, Samii JM, Karabeber H, Pitter KL, Holland EC, Kircher MF. High precision imaging of microscopic spread of glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe. Theranostics. 2016;6:1075–84. doi:10.7150/thno.13842.
Article
Google Scholar
Jain PK, Huang XH, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008;41:1578–86. doi:10.1021/ar7002804.
Article
Google Scholar
Jenkins CA, Lewis PD, Dunstan PR, Harris DA. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer. World J Gastrointest Oncol. 2016;8:427–38. doi:10.4251/wjgo.v8.i5.427.
Article
Google Scholar
Jokerst JV, Cole AJ, Van De Sompel D, Gambhir SS. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano. 2012a;6:10366–77. doi:10.1021/nn304347g.
Article
Google Scholar
Jokerst JV, Miao Z, Zavaleta C, Cheng Z, Gambhir SS. Affibody-functionalized gold–silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor. Small. 2011;7:625–33. doi:10.1002/smll.201002291.
Article
Google Scholar
Jokerst JV, Thangaraj M, Kempen PJ, Sinclair R, Gambhir SS. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano. 2012b;6:5920–30. doi:10.1021/nn302042y.
Article
Google Scholar
Ju K-Y, Lee S, Pyo J, Choo J, Lee J-K. Bio-inspired development of a dual-mode nanoprobe for MRI and Raman imaging. Small. 2015;11:84–9. doi:10.1002/smll.201401611.
Article
Google Scholar
Kang S, Wang Y, Reder NP, Liu JTC. Multiplexed molecular imaging of biomarker-targeted SERS nanoparticles on fresh tissue specimens with channel-compressed spectrometry. PLoS ONE. 2016;11:e0163473. doi:10.1371/journal.pone.0163473.
Article
Google Scholar
Karabeber H, Huang R, Iacono P, Samii JM, Pitter K, Holland EC, Kircher MF. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held raman scanner. ACS Nano. 2014;8:9755–66. doi:10.1021/nn503948b.
Article
Google Scholar
Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small. 2011;7:169–83. doi:10.1002/smll.201000134.
Article
Google Scholar
Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci. 2008;105:5844–9. doi:10.1073/pnas.0710575105.
Article
Google Scholar
Khan AH, Sadroddiny E. Application of immuno-PCR for the detection of early stage cancer. Mol Cell Probes. 2016;30:106–12. doi:10.1016/j.mcp.2016.01.010.
Article
Google Scholar
Kim ST, Saha K, Kim C, Rotello VM. The role of surface functionality in determining nanoparticle cytotoxicity. Acc Chem Res. 2013;46:681–91. doi:10.1021/ar3000647.
Article
Google Scholar
Kircher MF, De La Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18:829–34. doi:10.1038/nm.2721.
Article
Google Scholar
Kneipp J. Interrogating cells, tissues, and live animals with new generations of surface-enhanced Raman scattering probes and labels. ACS Nano. 2017;11:1136–41. doi:10.1021/acsnano.7b00152.
Article
Google Scholar
Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell. 2013;155:27–38. doi:10.1016/j.cell.2013.09.006.
Article
Google Scholar
Kong K, Kendall C, Stone N, Notingher I. Raman spectroscopy for medical diagnostics—from in vitro biofluid assays to in vivo cancer detection. Adv Drug Deliv Rev. 2015;89:121–34. doi:10.1016/j.addr.2015.03.009.
Article
Google Scholar
Kuhl CK, Schrading S, Leutner CC, Morakkabati-Spitz N, Wardelmann E, Fimmers R, Kuhn W, Schild HH. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol. 2005;23:8469–76. doi:10.1200/jco.2004.00.4960.
Article
Google Scholar
Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa Ramanujam VM, Urayama A, Vergara L, Kogan MJ, Soto C. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun. 2010;393:649–55. doi:10.1016/j.bbrc.2010.02.046.
Article
Google Scholar
Ru EC, Etchegoin PG. Principles of surface-enhanced Raman spectroscopy. Elsevier. 2009. doi:10.1016/B978-0-444-52779-0.X0001-3.
Google Scholar
Liu Y, Zhang N. Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging. Biomaterials. 2012;33:5363–75. doi:10.1016/j.biomaterials.2012.03.084.
Article
Google Scholar
Lutz BR, Dentinger CE, Nguyen LN, Sun L, Zhang J, Allen AN, Chan S, Knudsen BS. Spectral analysis of multiplex Raman probe signatures. ACS Nano. 2008;2:2306–14. doi:10.1021/nn800243g.
Article
Google Scholar
MacParland SA, Tsoi KM, Ouyang B, Ma X-Z, Manuel J, Fawaz A, Ostrowski MA, Alman BA, Zilman A, Chan WCW, McGilvray ID. Phenotype determines nanoparticle uptake by human macrophages from liver and blood. ACS Nano. 2017;11:2428–43. doi:10.1021/acsnano.6b06245.
Article
Google Scholar
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65:71–9. doi:10.1016/j.addr.2012.10.002.
Article
Google Scholar
Maiti KK, Dinish US, Samanta A, Vendrell M, Soh KS, Park SJ, Olivo M, Chang YT. Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today. 2012;7:85–93. doi:10.1016/j.nantod.2012.02.008.
Article
Google Scholar
Mallia RJ, McVeigh PZ, Fisher CJ, Veilleux I, Wilson BC. Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes. Nanomedicine. 2015;10:89–101. doi:10.2217/nnm.14.80.
Article
Google Scholar
Matousek P, Stone N. Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring. Chem Soc Rev. 2016;45:1794–802. doi:10.1039/c5cs00466g.
Article
Google Scholar
McVeigh PZ, Mallia RJ, Veilleux I, Wilson BC. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo. J Biomed Opt. 2013. doi:10.1117/1.JBO.18.4.046011.
Google Scholar
Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501:328–37. doi:10.1038/nature12624.
Article
Google Scholar
Mir-Simon B, Reche-Perez I, Guerrini L, Pazos-Perez N, Alvarez-Puebla RA. Universal one-pot and scalable synthesis of SERS encoded nanoparticles. Chem Mater. 2015;27:950–8. doi:10.1021/cm504251h.
Article
Google Scholar
Mohs AM, Mancini MC, Singhal S, Provenzale JM, Leyland-Jones B, Wang MD, Nie SM. Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem. 2010;82:9058–65. doi:10.1021/ac102058k.
Article
Google Scholar
Morla-Folch J, Gisbert-Quilis P, Masetti M, Garcia-Rico E, Alvarez-Puebla RA, Guerrini L. Conformational sers classification of k-RAS point mutations for cancer diagnostics. Angew Chem Int Ed. 2017;56:2381–5. doi:10.1002/anie.201611243.
Article
Google Scholar
Morla-Folch J, Guerrini L, Pazos-Perez N, Arenal R, Alvarez-Puebla RA. Synthesis and optical properties of homogeneous nanoshurikens. ACS Photonics. 2014;1:1237–44. doi:10.1021/ph500348h.
Article
Google Scholar
Morla-Folch J, Xie H-N, Alvarez-Puebla RA, Guerrini L. Fast optical chemical and structural classification of RNA. ACS Nano. 2016;10:2834–42. doi:10.1021/acsnano.5b07966.
Article
Google Scholar
Nima ZA, Mahmood M, Xu Y, Mustafa T, Watanabe F, Nedosekin DA, Juratli MA, Fahmi T, Galanzha EI, Nolan JP, Basnakian AG, Zharov VP, Biris AS. Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci Rep. 2014. doi:10.1038/srep04752.
Google Scholar
Nolan JP, Duggan E, Liu E, Condello D, Dave I, Stoner SA. Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods. 2012;57:272–9. doi:10.1016/j.ymeth.2012.03.024.
Article
Google Scholar
Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol. 2003;13:195–208. doi:10.1007/s00330-002-1524-x.
Google Scholar
Oseledchyk A, Andreou C, Wall MA, Kircher MF. Folate-targeted surface-enhanced resonance Raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer. ACS Nano. 2017;11:1488–97. doi:10.1021/acsnano.6b06796.
Article
Google Scholar
Pallaoro A, Braun GB, Moskovits M. Quantitative ratiometric discrimination between noncancerous and cancerous prostate cells based on neuropilin-1 overexpression. Proc Natl Acad Sci. 2011;108:16559–64. doi:10.1073/pnas.1109490108.
Article
Google Scholar
Pazos-Perez N, Pazos E, Catala C, Mir-Simon B, Gómez-de Pedro S, Sagales J, Villanueva C, Vila J, Soriano A, García de Abajo FJ, Alvarez-Puebla RA. Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids. Sci Rep. 2016;6:29014. doi:10.1038/srep29014.
Article
Google Scholar
Pazos-Perez N, Wagner CS, Romo-Herrera JM, Liz-Marzán LM, García de Abajo FJ, Wittemann A, Fery A, Alvarez-Puebla RA. Organized plasmonic clusters with high coordination number and extraordinary enhancement in surface-enhanced Raman scattering (SERS). Angew Chem Int Ed. 2012;51:12688–93. doi:10.1002/anie.201207019.
Article
Google Scholar
Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Craft AW, Parker L, Berrington de González A. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380:499–505. doi:10.1016/S0140-6736(12)60815-0.
Article
Google Scholar
Pedrol E, Garcia-Algar M, Massons J, Nazarenus M, Guerrini L, Martínez J, Rodenas A, Fernandez-Carrascal A, Aguiló M, Estevez LG, Calvo I, Olano-Daza A, Garcia-Rico E, Díaz F, Alvarez-Puebla RA. Optofluidic device for the quantification of circulating tumor cells in breast cancer. Sci Rep. 2017;7:3677. doi:10.1038/s41598-017-04033-9.
Article
Google Scholar
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WCW, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grünweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopeček J, Kotov NA, Krug HF, Lee DS, Lehr C-M, Leong KW, Liang X-J, Ling Lim M, Liz-Marzán LM, Ma X, Macchiarini P, Meng H, Möhwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjöqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung H-W, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang X-E, Zhao Y, Zhou X, Parak WJ. Diverse applications of nanomedicine. ACS Nano. 2017;11:2313–81. doi:10.1021/acsnano.6b06040.
Article
Google Scholar
Polo E, Collado M, Pelaz B, del Pino P. Advances toward more efficient targeted delivery of nanoparticles in vivo: understanding interactions between nanoparticles and cells. ACS Nano. 2017;11:2397–402. doi:10.1021/acsnano.7b01197.
Article
Google Scholar
Polo E, del Pino P, Pelaz B, Grazu V, de la Fuente JM. Plasmonic-driven thermal sensing: ultralow detection of cancer markers. Chem Commun. 2013;49:3676–8. doi:10.1039/C3CC39112D.
Article
Google Scholar
Qian J, Jiang L, Cai F, Wang D, He S. Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging. Biomaterials. 2011;32:1601–10. doi:10.1016/j.biomaterials.2010.10.058.
Article
Google Scholar
Qian XM, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie SM. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotech. 2008;26:83–90. doi:10.1038/nbt1377.
Article
Google Scholar
Rodríguez-Lorenzo L, Álvarez-Puebla RA, Pastoriza-Santos I, Mazzucco S, Stéphan O, Kociak M, Liz-Marzán LM, García de Abajo FJ. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J Am Chem Soc. 2009;131:4616–8. doi:10.1021/ja809418t.
Article
Google Scholar
Rodríguez-Lorenzo L, de la Rica R, Álvarez-Puebla RA, Liz-Marzán LM, Stevens MM. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater. 2012;11:604–7. doi:10.1038/nmat3337.
Article
Google Scholar
Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzan LM. Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale. 2011;3:1304–15. doi:10.1039/c0nr00804d.
Article
Google Scholar
Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–9. doi:10.1038/nature13118.
Article
Google Scholar
Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed. 2014;53:4756–95. doi:10.1002/anie.201205748.
Article
Google Scholar
Schramm M, Wrobel C, Born I, Kazimirek M, Pomjanski N, William M, Kappes R, Gerharz CD, Biesterfeld S, Bocking A. Equivocal cytology in lung cancer diagnosis. Cancer Cytopathol. 2011;119:177–92. doi:10.1002/cncy.20142.
Article
Google Scholar
Schumacher TN, Scheper W. A liquid biopsy for cancer immunotherapy. Nat Med. 2016;22:340–1. doi:10.1038/nm.4074.
Article
Google Scholar
Sha MY, Xu H, Penn SG, Cromer R. SERS nanoparticles: a new optical detection modality for cancer diagnosis. Nanomedicine. 2007;2:725–34. doi:10.2217/17435889.2.5.725.
Article
Google Scholar
Shields CW, Reyes CD, Lopez GP. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip. 2015;15:1230–49. doi:10.1039/c4lc01246a.
Article
Google Scholar
Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, Harris LJ, Detterbeck FC. Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2013;143:e211S–50S. doi:10.1378/chest.12-2355.
Article
Google Scholar
Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017. doi:10.1038/nrclinonc.2017.14.
Google Scholar
Smith AM, Mancini MC, Nie S. Bioimaging: second window for in vivo imaging. Nat Nano. 2009;4:710–1. doi:10.1038/nnano.2009.326.
Article
Google Scholar
Stone N, Faulds K, Graham D, Matousek P. Prospects of deep Raman spectroscopy for noninvasive detection of conjugated surface enhanced resonance Raman scattering nanoparticles buried within 25 mm of mammalian tissue. Anal Chem. 2010;82:3969–73. doi:10.1021/ac100039c.
Article
Google Scholar
Stone N, Kerssens M, Lloyd GR, Faulds K, Graham D, Matousek P. Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging—the next dimension. Chem Sci. 2011;2:776–80. doi:10.1039/C0SC00570C.
Article
Google Scholar
Subik K, Lee J-F, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung M-C, Bonfiglio T, Hicks DG, Tang P. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer. 2010;4:35–41.
Google Scholar
Taylor J, Huefner A, Li L, Wingfield J, Mahajan S. Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy. Analyst. 2016;141:5037–55. doi:10.1039/c6an01003b.
Article
Google Scholar
Verma S, Turkbey B, Muradyan N, Rajesh A, Cornud F, Haider MA, Choyke PL, Harisinghani M. Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. Am J Roentgenol. 2012;198:1277–88. doi:10.2214/AJR.12.8510.
Article
Google Scholar
Vilar-Vidal N, Bonhommeau S, Talaga D, Ravaine S. One-pot synthesis of gold nanodimers and their use as surface-enhanced Raman scattering tags. New J Chem. 2016;40:7299–302. doi:10.1039/c6nj01389a.
Article
Google Scholar
Von Maltzahn G, Centrone A, Park JH, Ramanathan R, Sailor MJ, Alan Hatton T, Bhatia SN. SERS-coded cold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater. 2009;21:3175–80. doi:10.1002/adma.200803464.
Article
Google Scholar
Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335:1458–62. doi:10.1126/science.1216210.
Article
Google Scholar
Wang Y, Chen L, Liu P. Biocompatible triplex Ag@SiO2@mTiO2 core-shell nanoparticles for simultaneous fluorescence-SERS bimodal imaging and drug delivery. Chem Eur J. 2012;18:5935–43. doi:10.1002/chem.201103571.
Article
Google Scholar
Wang Y, Kang S, Khan A, Ruttner G, Leigh SY, Murray M, Abeytunge S, Peterson G, Rajadhyaksha M, Dintzis S, Javid S, Liu JTC. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci Rep. 2016. doi:10.1038/srep21242.
Google Scholar
Wang Y, Schlucker S. Rational design and synthesis of SERS labels. Analyst. 2013;138:2224–38. doi:10.1039/C3AN36866A.
Article
Google Scholar
Wang YW, Khan A, Som M, Wang D, Chen Y, Leigh SY, Meza D, McVeigh PZ, Wilson BC, Liu JTC. Rapid ratiometric biomarker detection with topically applied SERS nanoparticles. Technology. 2014a;2:118–32. doi:10.1142/S2339547814500125.
Article
Google Scholar
Wang Z, Zong S, Chen H, Wang C, Xu S, Cui Y. SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation. Adv Healthc Mater. 2014b;3:1889–97. doi:10.1002/adhm.201400092.
Article
Google Scholar
Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater. 2014;13:125–38. doi:10.1038/nmat3780.
Article
Google Scholar
Xie HN, Stevenson R, Stone N, Hernandez-Santana A, Faulds K, Graham D. Tracking bisphosphonates through a 20 mm thick porcine tissue by using surface-enhanced spatially offset Raman spectroscopy. Angew Chem Int Ed. 2012;51:8509–11. doi:10.1002/anie.201203728.
Article
Google Scholar
Yuan H, Fales AM, Vo-Dinh T. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient nir photothermal therapy using ultralow irradiance. J Am Chem Soc. 2012;134:11358–61. doi:10.1021/ja304180y.
Article
Google Scholar
Zavaleta CL, Garai E, Liu JTC, Sensarn S, Mandella MJ, Van de Sompel D, Friedland S, Van Dam J, Contag CH, Gambhir SS. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci. 2013;110:E2288–97. doi:10.1073/pnas.1211309110.
Article
Google Scholar
Zavaleta CL, Hartman KB, Miao Z, James ML, Kempen P, Thakor AS, Nielsen CH, Sinclair R, Cheng Z, Gambhir SS. Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging. Small. 2011;7:2232–40. doi:10.1002/smll.201002317.
Article
Google Scholar
Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci. 2009;106:13511–6. doi:10.1073/pnas.0813327106.
Article
Google Scholar
Zhou Q, Kim T. Review of microfluidic approaches for surface-enhanced Raman scattering. Sens Actuator B Chem. 2016;227:504–14. doi:10.1016/j.snb.2015.12.069.
Article
Google Scholar