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article pathway of apoptosis. For this purpose, the cells were cultured as monolayers. Then

both cell lines were treated with 5-Fu/magnetic nanoparticles and magnetic hyper-
thermia. Finally, the effect of treatment on cancer cells was determined by Western blot
analysis and flow cytometry.

Results: Our results showed that combined chemo-magnetic thermotherapy signifi-
cantly increased the apoptosis in colon cancer cells compared to chemotherapy or
hyperthermia alone (P < 0.05). Up-regulation of Bax, cleaved caspase 3&9, and cleaved
PARP proteins was indicative of apoptosis induction in cancer cells, which are involved
in the intrinsic pathway of apoptosis.

Conclusions: This study demonstrates that localized hyperthermia was able to signifi-
cantly trigger the 5-Fu release and inhibit cell viability, which, due to the synchroniza-
tion of hyperthermia and chemotherapy, exacerbated the damage of cancer cells.
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Background

Alternating magnetic hyperthermia (AMH) is one of the most effective adjuvant ther-
apeutic modalities generated by radiofrequency waves and used in combination with
other modalities, such as radiotherapy and chemotherapy (Hildebrandt et al. 2002).
The most challenging limitation of conventional cancer treatments, e.g., radiother-
apy and chemotherapy, is that they instigate severe adverse effects in patients (Pan
et al. 2020; Shirvalilou et al. 2021). Hence, today, the combined therapeutic modality
(radio or chemo-thermo therapy) is increasingly being accepted as a potential treat-
ment method in certain primary and secondary colon cancers (Grimmig et al. 2017).
Research has also shown that in combination chemo-thermo therapy, the likelihood
of successful treatment increases by approximately 20 to 30 percent, due to enhanced
blood flow, improved oxygen and drug delivery, and pronounced tumor sensitivity
(Wust et al. 2002).

In clinical treatment of colon cancer, development of resistance to chemotherapeutic
agents creates a potential barrier to successful treatment of patients in advanced stages
of colon cancer (Agarwal et al. 2018). On the other hand, one of the unique features of
AMH is that it can be used specifically for targeted treatment of deep-seated tumors,
such as glioma (Afzalipour et al. 2020), breast cancer (DeNardo et al. 2007), and colon
cancer (Asadi et al. 2018). Thus, we speculated that combination of chemotherapy and
AMH might significantly increase tumor cell death in the chemoresistance colon can-
cer cells through induction of apoptosis. Lin et al. and Jiang et al. showed that ezrin—
radixin—moesin (ERM) family of proteins is overexpressed in colon cancer tumors.
Radixin promotes invasion and migration of colon cancer cells by activating Rac1-ERK
pathway and increasing MMP-7 production (Jiang et al. 2014; Lin et al. 2013). Protein
kinase B (Akt) is activated by 5-FU and plays an important role in 5-FU chemoresistance
of colon cancer cells, such as HT29 and HCT116 cells (Liu et al. 2017). Accordingly, we
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studied two 5-Fu chemoresistance colon cancer cell lines, HT29 and HCT116 (He et al.
2017; Huang et al. 2019), the former of which is necrosis factor-related apoptosis-induc-
ing ligand (TRAIL) resistant, while the latter is TRAIL sensitive (Lee et al. 2011).

To evaluate this hypothesis, we first synthetized SPION@PEG-PBA-PEG nanoparti-
cles (MNPs) that were then loaded with 5-Fu.

5-Fu is a thymine analog with a fluorine substituent instead of methyl group, which
is widely used for the treatment of malignancies (Ansfield et al. 1962; Sharp and Ben-
efiel 1962). It is able to induce apoptosis in normal and tumoral intestinal cells (Var-
ghese et al. 2019). However, it comes with several disadvantages, including short
biological half-life, resulting from rapid metabolism of the drug, and hydrophilic nature,
which renders it unable to readily pass through the cell membrane (Ortiz et al. 2012). In
recent years, nanoparticles have widely been used for drug delivery, hence, the applica-
tion of magnetic nanoparticles in the present study. Superparamagnetic nanoparticles
(SPIONS) are one of the most important nanomaterials for induction of AMH. They
can locally convert the energy of the alternating magnetic field to heat at the tumor site,
thus, killing tumor cells (Kumar and Mohammad 2011; Sheervalilou et al. 2021). Intra-
cellular magnetic hyperthermia was first proposed by Gordon et al. in 1979 (Gordon
et al. 1979). The technique had more benefits than traditional hyperthermia, particularly
the capability to heat malignant cells from “inside-out” The latter could trigger cell death
(apoptosis/necrosis), while simultaneously altering the function of specific proteins, ren-
dering tumor cells more sensitive to chemotherapy or radiotherapy (Piazza et al. 2020;
Rajaee et al. 2018). The current study investigates the effects of the seemingly excellent
combinatorial treatment modality, consisting of chemotherapy and AMH on colon can-
cer cells, following the internalization of SPIONs carrying the chemotherapeutic agent
(Wang et al. 2020).

In this study, the properties of the synthesized nanoparticles were analyzed to deter-
mine the size range and shape of the nanoparticles. In vitro efficacy of drug delivery,
cytotoxicity, and cellular uptake of MNPs were investigated on the HT29 and HCT116
cell lines. Since previous research had demonstrated that apoptosis might be aggra-
vated by irradiation, heat, or anti-cancer drugs (Fu et al. 2014; Mhaidat et al. 2014), in
this study the Bax and Bcl-2 proteins expression were investigated by Western blot-
ting method. Bcl-2 protein is an important inhibitor of apoptosis in cells, whereas Bax
is a pro-apoptotic protein that promotes apoptosis. Therefore, an increase in Bax/Bcl-2
expression ratio indicates facilitated induction of apoptotic death (Sadeghi et al. 2019;
Shirvalilou et al. 2020).

Results

Colon cancer cell lines

The human colon cancer cell lines HT29 and HCT116 were cultured as a monolayer in
tissue culture flasks. The population doubling times were approximately 14.72£0.41 h
and 27.34 4-4.45 h, respectively.

Characterization of the SPION@PEG-PBA-PEG loaded with 5-Fu (MNPs@5-Fu)
The schematic profile of the final structure of the triblock copolymers (PEG-PBA-PEG)
is shown in Fig. 1A. The synthesis of triblock copolymer was verified by "H NMR spectra
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Fig. 1 AThe chemical synthesis formula of PEG-PBA-PEG triblock copolymers, B "H-NMR spectrum of
PEG-PBA-PEG polymer dissolved in deuterated chloroform (CDCly)

and observation of peaks in chemical shifts of 1.6, 2.3, 3.6, and 4.1 ppm (Fig. 1B). DLS
results showed that nanoparticles with/without 5-Fu had a mean hydrodynamic size
of 30-45 nm (Fig. 2A, B). The zeta potentials of MNPs and 5-Fu loaded MNPs were
— 30.08 and — 28.71 mV, respectively (Table 1). The morphology of nanoparticles is
shown in Fig. 2C. The TEM image of MNPs@5-Fu confirmed that the nanoparticles
were spherical in size less than 30 nm. The 5-Fu loading content and encapsulation effi-
ciency of the MNPs was 5.77% and 53.34%, respectively. Figure 2D shows the in vitro
release profiles of 5-Fu from the MNPs at 37 °C and 43 °C. As can be observed, tempera-
ture had no effect on release rate. 5-Fu was released to the extent of 62.1% and 63.21%
from MNPs@5-Fu nanoparticles, within approximately 72 h in a PBS at 37 °C and 43 °C,

respectively.

In vitro cytotoxicity assay of MNPs@5-Fu nanoparticles

The cytotoxic effects of free 5-Fu and MNPs with/without drug were investigated
with MTT test in the HT29 and HCT116 cell lines through the course of the 24 h
treatment. The rate of cell viability as a function of 5-Fu concentration is shown
in Fig. 2E, F. The results indicated that MNPs@5-Fu had a significant effect on
the viability of both cell lines compared to the 5-Fu and blank MNPs (P<0.05). As
depicted in Fig. 2(D, E), after treatment for 24 h, the IC50 values of 5-Fu, MNPs,
and MNPs@5-Fu were equal to 30.58 £+ 1.49, 43.554+2.03, and 16.14 + 0.22 for HT29
cells, and 13.93+1.45, 20.08 +1.67, and 0.68 £1.01 uM for HCT116 cells, respec-
tively. As shown in Fig. 2(D, E), the cytotoxicity of 5-Fu loaded MNPs in HCT116
cells was higher than that observed in the HT29 cells (P <0.05).
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Fig. 2 Particle size distribution of A SPIONs@PEG-PBA-PEG, and B SPIONs@PEG-PBA-PEG@5-Fu (MNPs@5-Fu),
CTEM image of MNPs@5-Fu, In vitro release profile of 5-Fu from MNPs@5-Fu nanoparticles in two
temperatures (37 and 43 °C), D The toxicity effects of 24 h treatment with 5-Fu, SPIONs@PEG-PBA-PEG (MNPs)
and 5-Fu loaded MNPs nanoparticles on; E HT29 cell line and F HCT116 cell line. (Mean £ SD, n=3)

Table 1 Physico-chemical properties of nanoparticles (Mean +SD, n=3)

Nanoparticles Size (nm) Zeta Potential (mV) Polydispersity
index

SPIONs@PEG-PBA-PEG(MNPs) 329+0.58 —30.08+1.07 0.204

SPIONs@PEG-PBA-PEG@5-Fu 4461094 —2871+1.26 0.216

Cellular uptake of MNPs@5-Fu

The internalization of the nanoparticles into cells was assessed through the ICP-
OES analysis of HT29 and HCT116 cell lines after 24 h. The quantitative ICP-OES
data are illustrated in Fig. 3. The cellular uptake of Fe was equal to 0.017+0.007 and
0.042+0.002 pg/cell for HT29 and HCT116 cells, respectively. Our ICP-OES results
suggested that MNPs@5-Fu nanoparticles had a significantly higher affinity for entering
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Fig.4 A The mean temperature curve of HT29 and HCT116 cells in the presence and absence of
nanoparticles during heating by 13.56 MHz alternative radiofrequency magnetic field at a power of 80 W
measured by IR camera, B Thermal image during heating

HCT116 cells than HT29 (P<0.01, Fig. 3), a finding that might explain the greater toxic-
ity of nanoparticles in HCT116 cells compared to HT29. The latter statement was con-
firmed by our MTT results.

AMF-induced heating profile

To determine the approximate time of hyperthermia at 43 °C, the temperature changes
of HT29 and HCT116 cell lines under an AMF exposure with and without MNPs@5-Fu
nanoparticles were measured by IR camera. Thermometry data are visualized in Fig. 4A,
B. The temperature of HT29 and HCT116 cell lines reached 43 °C after approximately
2441 min of AMF exposure without the presence of nanoparticles. On the other hand,
the temperature rapidly reached 43 °C within 5 min in the HT29 and HCT116 cell lines
treated with MNPs@5-Fu nanoparticles.

In vitro anti-tumor efficacy of treatment modalities

Flow cytometry analysis

Results of flow cytometry analysis for both cell lines are shown in Figs. 5 and 6. As flow
cytometry results indicated, there was a significant difference between the control group
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Fig.5 A The Annexin V/Pl assay for evaluating the apoptosis of HT29 cells, B The percentage of apoptotic
and necrotic cells, 24 h after treatment with 5-Fu, MNPs, and MNPs@5-Fu only or combined with AMF
exposure. (Mean=£SD, n=3, (¥) P<0.05, (**) P<0.01, and (***) for P<0.001, respectively)

and treatment groups for both cell lines (P<0.05). However, there was no remarkable
difference between the control group and blank MNPs for HT29 cells (P> 0.05). The sig-
nificant difference in cell death ratio was also observed between free 5-Fu and MNPs@5-
Fu for HT29 and HCT116 cells (P<0.03), suggesting increased toxicity of the 5-Fu after
being loaded onto the nanoparticles. The results clearly verified the 5-Fu-induced apop-
totic death in cancer cells. On the other hand, 5-Fu or MNPs plus AMF had a significant
effect on HT29 cells compared to the 5-Fu or AMF alone (P<0.01). Nevertheless, for
HCT116 cells, only combinatorial therapy of MNPs and AMF showed a significant effect
compared to single 5-Fu or MNPs alone (2 <0.05).

Ultimately, our findings suggested that the combinatorial therapy of hyperthermia and
MNPs@5-Fu could greatly increase the rate of HT29 and HCT116 cell death (P<0.001).
As shown in Figs. 5 and 6A, B, the highest apoptosis and necrosis level (19.13% for
HCT116 and 12.3% for HT29) belonged to the MNPs@5-Fu+ AFM group.



Jahangiri et al. Cancer Nanotechnology (2021) 12:34 Page 8 of 17

A Control MNPs 5-Fu MNPs@5-Fu
ut o @ u* ] 73 '°d_m 7] ‘De_m @
118 082 29 182 208 22 3 293
| ecoals Late Apoptosis o s '
= % E
w
< A
£
o ] g
£ ;
S i B Early Apoptosis
, fo7s % 0s7
L v .l T . "
m: m’ ID‘ m‘ m‘ 10 m’ \D‘ Ibs !D‘
u* 3on o2 L Q
3 369 an 540
=
w
<
£
H
B *kk
——
30 4 Early apoptosis HTC116 2%
25 | » Late apoptosis
m Necrosis
X
) -
..'C.. 20 *
8 Rk
15 | '
©
-— *
[T] 10
° I -
N I I
. ___ﬁ - l ! l ,
3 > > & & 3
R
[y Qe;@ bﬁo e?" ad
o
& s 8
&

Fig.6 AThe Annexin V/Pl assay for evaluating the apoptosis of HTC116 cells, B The percentage of apoptotic
and necrotic cells, 24 h after treatment with 5-Fu, MNPs and MNPs@5-Fu only or combined with AMF
exposure. (Mean=£SD, n=3, (¥) P<0.05, (**) P<0.01, and (***) for P<0.001, respectively)

Western blot analysis

In vitro anti-tumor efficacy of different therapeutic modalities was estimated via
Western blot analysis. We evaluated the expression of apoptosis-related proteins,
such as Bcl-2, Bax, caspase-9, caspase-3, and PARP. As illustrated in Figs. 7 and 8A, B,
an increased expression of pro-apoptotic factor, Bax, cleaved caspase-3, cleaved cas-
pase-9, and cleaved PARP was observed in the treatment groups, compared to the
control group (P<0.05). However, there was no significant difference between the
control and MNPs group (P>0.05). The results also suggested the down-regulation
of Bcl-2 in the treatment group of MNPs@5-Fu and AMF hyperthermia compared
to control group (P<0.05), while there were no significant differences between the
control and other groups (P>0.05). The highest expression of pro-apoptotic proteins
and the least expression of anti-apoptotic proteins were achieved with the combinato-
rial treatment of MNPs@5-Fu and AMF hyperthermia (P<0.001). In all groups, the
rate of apoptosis and necrosis of HCT116 cells was higher than HT29 cells, indicating
resistance of HT29 cells to HCT116 cells, which favored the results of cell apoptosis
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Fig. 8 A Quantification data and B Presentation Blots from Western blot analysis of the apoptosis-related
proteins in HCT116 cells after treatment with different groups. (Mean +SD, n=3)

assay and MTT assay. The results of molecular research were in complete agreement
with the flow cytometry analysis.

Discussion

Due to the increasing prevalence of colon cancer, the present study investigated the
efficiency of a combination therapy comprising 5-fluorouracil-loaded SPIONs coated
with triblock copolymer PEG-PBA-PEG nanoparticles (MNPs@5-Fu), and hyperther-
mia. According to most studies the routine treatment for colon cancer often includes
5-Fu and additional antiplatelet drugs (Pardini et al. 2011). However, given the limi-
tations on administration of drugs, such as systemic toxicity and the low half-life of
the drug, concomitant use of chemotherapy with other therapies is thought to be as
effective (Mohammadi et al. 2012). To overcome these problems in this study, we
attempted to load iron nanoparticles with drugs, and take advantage of their heating
properties under the magnetic field to generate local heat in cancer cells.

The size and shape of nanoparticles are important parameters in successful deliv-
ery of the drug into the cells. Based on previous studies, a size of about 10-100 nm is
considered as the optimal size for proper accumulation of nanoparticles in tumor cells
(Shirvalilou et al. 2020). Some researchers have also reported that a Zeta potential value
of — 30 mV can be considered optimum for sufficient stability in the aqueous medium
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(Dilnawaz et al. 2010). MNPs@5-Fu nanoparticles had an average hydrodynamic size
below 50 nm and zeta potential about -30 mV (Table 1). Loading of 5-Fu into the mag-
netite nanoparticles increased the size of the MNPs from 33 to 45 nm, which was similar
to the findings reported by Emamgholizadeh Minaeia et al. (2019). Their results showed
that loading Temozolomide onto SPION-PEG-PBA-PEG increased the nanoparticle size
(Minaei et al. 2019). On the other hand, loading of the drug onto the MNPs increased
the half-life of the drug and further slowed down its already slow release, which ulti-
mately increased the shelf life of the drug in the environment (Fig. 2D). Considering the
confirmation of cellular uptake of nanoparticles by ICP-OES test (Fig. 3) and MTT assay
data (Fig. 2E, F) it can be suggested that nanoparticles increased the toxicity of the 5-Fu
by facilitating drug delivery into the cells. In Fig. 2, the lowest toxicity belongs to the
nanoparticles, indicating the biocompatibility of the nanoparticles with HCT116 and
HT?29 cell lines. MTT results confirmed that viability of HT29 and HCT116 cells treated
with SPIONs coated triblock copolymer PEG-PBA-PEG was more than 70% at a high
concentration (8 pM and 1 pM, respectively) for 24 h, while 5-Fu loaded MNPs were
shown to have a significantly higher toxicity than the blank MNPs (Fig. 2E, F). This could
indicate the negligible toxicity of synthesized SPIONs coated triblock copolymer PEG-
PBA-PEG. Similar results have been reported by Kim et al. and Lee et al., highlighting
the good cell biocompatibility and low toxicity of copolymer polymers mPEG-PBA (at
high concentrations > 200 pg/mL) (Kim et al. 2016), and PEG coating on SPIO nanopar-
ticles (> 50 pg/mL) (Dulinska-Litewka et al. 2019), respectively. Figure 2E, F shows that
HCT-116 cells were more sensitive to 5-Fu and MNPs with/without drug compared to
HT-29 cells. Mhaidat et al. indicated that HCT116 colon cancer cells had the greatest
sensitivity to 5-Fu, while the HT29 cells were less sensitive to 5-Fu (Mhaidat et al. 2014).
Ravizza et al. (2004) demonstrated that the HT29 cells carrying a mutant form of the
p53 gene were more resistant to the DOX toxicity than the HCT116 cells. Golbaz et al.
suggested that HCT116 cells were very sensitive to X-rays, while HT29 cells were more
resistant to X-rays (Golbaz et al. 2020).

Following the synthesis and characterization of the nanoparticles, therapeutic
approaches were tested on the two colon cancer cell lines (HT29 and HCT116) to evalu-
ate the therapeutic efficacy of chemo-hyperthermia. Since both 5-Fu and hyperthermia
treatments induce apoptosis in the cells (Mustafa et al. 2013), the rate of apoptotic death
in the two cell lines was evaluated by flow cytometry and Western blot assay.

Caspases are a group of proteins presented by the cysteine protease family that modu-
late the apoptotic response (Kumar 1999). Caspase-3 is a major mediator of apoptosis,
which is activated by an initiator caspase-9. Activated caspases break down many cellu-
lar substrates, such as PARP, eventually leading to cell death (Slee et al. 2001). The results
of flow cytometry showed that the simultaneous application of AMF and 5-Fu increased
the number of cells undergoing apoptosis compared to 5-Fu or AMF alone (P<0.05,
Figs. 5 and 6). The results indicated that magnetic hyperthermia improved the efficacy
of chemotherapy, which could be due to the constructive effect of hyperthermia on the
permeability of the cell membrane to the chemotherapeutic agents (Mérida et al. 2020).
The combinational treatment of MNPs and AMF hyperthermia resulted in more cyto-
toxicity than MNPs, and AMF alone (P<0.05, Figs. 5, 6, 7 and 8). Accordingly, Mustafa
et al. (2013) reported that when the human breast adenocarcinoma cancer cells were
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exposed to RF hyperthermia (high frequency of 13.56 MHz or low frequency of 350 kHz)
in the presence of iron nanoparticles for 20 min, cell death was significantly increased
compared to RF treatment alone (Mustafa et al. 2013). In fact, the results of this study,
compared to the study by Golbaz et al. (2020), confirmed that magnetic nanoparticles
in combination with hyperthermia are much more efficient than in combination with
X-rays. On the other hand, the combinatorial therapy of 5-Fu and AMF hyperthermia
showed a greater effect on HT29 cells (P<0.05) than on HCT116 cells (?>0.05) com-
pared to single therapies of 5-Fu or AMF. This may be due to the high resistance of HT29
cells to 5-Fu treatment (He et al. 2017; Lee et al. 2011). Consistently, Zamora-Mora et al.
showed that the 5-Fu, along with the AMF, had a significant effect on A172 cells, while
no such effect was reported for FBH cells compared to the drug alone (Zamora-Mora
et al. 2017). Ultimately, our in vitro results showed that colon cancer cells (HCT116 and
HT29) could be significantly destroyed when exposed to MNPs@5-Fu nanoparticles
and AMF hyperthermia. The highest induction of apoptosis (14.06% for HCT116 and
8.87% for HT29) was obtained in this treatment group. Investigation of the mechanism
of action showed that this treatment method could induce apoptosis in human colon
adenocarcinoma HCT116 and HT29 cell lines by up-regulating the level of Bax, cleaved
caspase-9, cleaved caspase-3, and cleaved PARP, while down-regulating the levels of Bcl-
2, Pro-caspase 9, and Pro-PARP. Wang et al. (2007) and Liang et al. (2007) had already
shown that the up-regulation of Bax and down-regulation of Bcl-2 could be enhanced by
the activation of mitochondrial apoptotic pathway under hyperthermia combined with
chemotherapy.

Conclusions

This study presents the assessment of size, surface charge, toxicity, and pharmacoki-
netics of synthesized magnetic nanocarriers. The results showed that MNPs have low
toxicity in both HT29 and HCT116 cell lines. Also, our study showed that chemo-ther-
mia with magnetic nanoparticles coated with triblock copolymers PEG-PBA-PEG, as a
5-fluorouracil carrier, combined with alternating magnetic field hyperthermia signifi-
cantly induced the apoptosis in the chemoresistant HT29 and HCT116 cell lines through
up-regulation of Bax, activation of caspase-3, caspase-9, PARP, and down-regulation of
Bcl-2.

Methods

Cell line and monolayer culture

The human colonic adenocarcinoma cell lines HT29 and HCT116 were purchased from
Pasteur Institute of Iran. Cells were cultured in RPMI-1640 complete medium (Thermo
Fisher Scientific, GIBCO, USA) with 10% fetal bovine serum (FBS) (Bovogen Biologicals
Pty Ltd, Australia), penicillin (100 units/mL), and streptomycin (100 pg/mL, GIBCO).
The HT29 and HCT116 cells (10* cells/cm?) were cultured in the T-25 tissue culture
flasks (Orange Scientific, Braine 'Alleud, Belgium). The cultures were maintained in
incubator (Memmert GmbH + Co. KG, Germany) with a 5% CO, and temperature of
37°C.
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Synthesis and characterization of nanoparticles

Synthesis of copolymer PEG (2000)-Poly(butylene adipate)-PEG (2000), (PEG-PBA-PEG)
PEG (2000)-Poly(butylene adipate)-PEG (2000) was produced by polycondensation
reaction of 1,4-butylene glycol and adipoyl chloride under solvent-free conditions. The
reaction was initiated by adding 0.9 mL (0.65 g, 6.5 mmol) of triethylamine to 1.58 mL
(1.98 g, 10.815 mmol) of adipoyl chloride and 0.91 mL (0.93 g, 10.3 mmol) of 1,4-butan-
ediol at 85 °C on the magnetic stirrer overnight (until no more HCl was released) (Khoee
et al. 2007). When the acid chloride to alcohol ratio increased (1.05:1), the end groups of
the polymers would be the acid chloride groups. Then, excess amount of PEG was mixed
with the polyester. The product was precipitated in 40 mL diethyl ether at 15 °C, rinsed
3 times with distilled water (3 x 30 mL), and then separated by centrifugation. The syn-
thesis of PEG-PBA-PEG polymer was dried at a reduced temperature for 10 h and then
confirmed by 1H NMR spectra (Fig. 1).

Preparation of Fe;0,@PEG-PBA-PEG@5-Fu nanoparticles by double emulsion method
Dual emulsion (w/o/w) method was used to produce the Fe;O,@PEG-PBA-PEG@5-Fu
nanoparticles. At first, 30 mg of Fe;O, nanoparticles was suspended in 7 mL of dichlo-
romethane, and then PEG-PBA-PEG polymer (50 mg) and Span 60 (200 mg) were added
to the mixture. After, 10 mg of 5-Fu was dissolved in the mixture of deionized water and
Tween 60, and this solution was added to polymer coated Fe;O, nanoparticles (MNPs)
suspension and sonicated for 30 s. The emulsion was added to a solution containing
deionized water (15 mL) and glycerol (15 mL) and, mechanically stirred for 3 h. The
obtained nanoparticles were then separated using a magnet, and then washed twice with
deionized water. The product was dried for 12 h using a freeze dryer.

The blank nanoparticles were synthesized in exactly the same method, only without
the addition of 5-Fu.

Characterization of the nanoparticles

Hydrodynamic size and zeta potential of the nanoparticles (Fe;O,@PEG-PBA-PEG,
Fe;O,@PEG-PBA-PEG@5-Fu) were evaluated by Zeta sizer analyzer (Nanoflex, nano-
Care Company, Germany). The morphology of the nanoparticles was determined by a
Transmission Electron Microscope (TEM) (Zeiss LEO906, Carl Zeiss company, Ger-
many). In addition, the nanoparticle size distribution was extracted from TEM images
by Image J software.

Next, to determine the drug loading capacity (DLC) and encapsulation efficiency (EE),
3.9 mg of MNP@5-Fu nanoparticles was suspended in acetone and the 5-Fu concentra-
tion was determined by a UV spectrophotometer (Pharmacia Biotech, SPW Industrial,
USA) at a 256 nm wavelength. The DLC and EE properties were determined according
to Egs. 1 and 2, respectively:

DLC (%) = (Amount of 5-Fu in the nanoparticles/Nanoparticles weight) x 100,
(1)

EE (%) = (Amount of 5-Fu in the nanoparticles/Total amount of 5-Fu in the feeding) % 100.

(2)
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Finally, to determine the 5-Fu release profile from nanoparticles (MNPs@5-Fu) in
PBS (release medium, pH ~7.4), dialysis bag (MWCO 12, 400 Da) diffusion method was
used. Concentration of 5-Fu loaded on the nanoparticles was determined using a UV
spectrophotometer at 256 nm.

In vitro cytotoxicity assay

The cytotoxicity of the two types of nanoparticles (MNPs, MNPs@5-Fu) and free 5-Fu
in the HT29 and HCT116 cells was investigated using MTT assay. The cell lines were
cultured in a 96-well plate (5000 cells/well) overnight. Then, the cells were treated with
5-Fu (0.01-100 pM) and the nanoparticles with/without drug at equivalent 5-Fu con-
centrations (0.65 to 20.81 pg/mL) for 24 h. Three wells with untreated cells were used as
control group. Next, the wells were rinsed twice with cold PBS solution, and MTT solu-
tion (100 pL) was added to each well, which was then incubated for 4 h. The MTT dye
was then removed, and 100 pL of DMSO solution was added to each well and shaken for
20 min. The absorbance was measured with an ELISA Reader set to 570 nm. Cell viabil-
ity charts were plotted against different drug concentrations and inhibitory concentra-
tion (IC50) was calculated.

Cellular uptake of nanoparticles

Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to meas-
ure the amount of nanoparticles uptake into the HT29 and HCT116 cells. Cells (2 x 10°
cell/flask) were seeded in T-25 flasks for 24 h and then treated with a concentration of
0.859 pg/mL of nanoparticles with/without 5-Fu. After treatment for 24 h, the cells were
rinsed with cold PBS to be eliminated of suspended nanoparticles. Cells were trypsi-
nized, counted, and then digested with HNO; (500 pL) at 150 °C for 2 h. Finally, the
iron concentration in the samples was determined by an ICP-OES test (Vista Pro, Var-
ian, Australia).

Heating profile of Magnetic hyperthermia

In order to determine the time required for magnetic hyperthermia (at 43 °C) by applica-
tion of AME, the temperature changes of both cells were evaluated using an infrared (IR)
thermal camera. The HT29 and HCT116 cell lines were cultured in T-25 flasks. After
24 h, 0.3 pg/mL of free 5-Fu or 0.859 pg/mL of MNPs was added to the culture medium.
After 24 h, the treated cells were rinsed with cold PBS and fresh RPMI medium was
replaced. The samples (treated and controlled) were then placed in a circular RF coil
and exposed with an alternating magnetic field (13.56 MHz, 40 A/m). The temperature
changes of the cells were monitored using an IR camera (875-2i, Testo, UK) and the tem-

perature—time curve was plotted.

Therapeutic efficiency of different treatment modalities
The cytotoxic effects of chemotherapy, nanoparticles, and AMF hyperthermia alone
or in combination were investigated on the HT29 and HCT116 cell lines. In our study,
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eight treatment groups were evaluated: (1) control; (2) free 5-Fu (0.3 pg/mL ~IC10); (3)
MNPs (0.859 pg/mL); (4) MNPs@5-Fu (0.859 pg/mL containing 0.3 pug/mL of 5-Fu);
(5) AMF hyperthermia (13.56 MHz, 80 W); (6) MNPs+ AMF; (7) 5-Fu+ AMF; and (8)
MNPs@5-Fu.

The HT29 and HCT116 cell lines were seeded into T-25 flasks. After 24 h, the cells
were treated with different treatment modalities. According to the time—temperature
curve, the AMF exposure time in combination with nanoparticles was 5 min for both
cell lines. However, when AMF was applied alone, the exposure time was 23 min for
HT29 and 24 min for HCT116. Finally, the toxicity effects of different treatments modal-
ities were evaluated using the Annexin V-FITC/PI fluorescent kit, and Western blotting

analysis. All treatments were repeated three times.

In vitro anti-tumor efficacy of nanoparticles

Cell apoptosis assay

To determine the cell apoptosis induced by different therapeutic methods on the HT29
and HCT116 cell lines, cells were cultured and treated. After 24 h of treatment, cells
were detached, rinsed with cold PBS, and suspended in the ice-cold 1X binding buffer.
After that, FITC Annexin V (5 pL) was added to each sample, and the samples were
incubated at 25 °C in the dark for 15 min. Then, propidium iodide (5 pL) was added to
each sample, and the cells were evaluated with BD FACS Caliber flow cytometry device
(BD, San Jose, USA). Finally, the percentage of apoptotic and necrotic cells in each sam-
ple was analyzed and calculated.

Western blotting

Western blotting method was performed for analyzing the protein expression. In sum-
mary, the cells were lysed on ice by a RIPA Buffer mixed with PhosStop (Roche Applied Sci-
ence, Germany), protease inhibitors (Roche Applied Science, Germany), and PMSF (Merck
KGaA, Germany). Concentration of the total protein extracted from the treated cells was
measured with Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, USA). ALL samples
were uniformly loaded with equal amounts of sample protein. Proteins were separated by
SDS—polyacrylamide gel electrophoresis (SDS-PAGE) and blotted onto a PVDF membrane
(Millipore, Merck, Germany). Membranes were probed with specific primary antibodies
and Rabbit polyclonal Secondary Antibody to Sheep IgG—H&L (HRP) (ab97130, 1:5000
dilution, Abcam, Cambridge, MA, USA). Then, chemiluminescent signals were visualized
for bands with horseradish peroxidase (HRP) substrate (Merck KGaA, Germany). The fol-
lowing antibodies were used: Bcl-2 (ab196495, 1:1000 dilution); Bax (ab32503, 1:5000);
cleaved caspase-9 (ab202068, 1:2000); cleaved caspase-3 (ab32351, 1:5000, Abcam); and
cleaved PARP (ab191217, 1:1000). These antibodies were purchased from Abcam Company
(Abcam, Cambridge, MA, USA). B-actin (#4967, 1:1000,) was purchased from Cell Signal-
ing Technology (CST) company (Beverly, MA, USA) (all the resulting protein bands were
visualized using ECL Western Blotting Detection Reagent (ChemiDocXRS; Bio-Rad, USA)
and quantified by densitometry using Image] software and normalized to that of B-actin
protein. In quantitative Western blotting analysis, target proteins (Bax, Bcl-2, caspase
3&9, and PARP) were measured in samples treated by various treatment modalities. The
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intensity of each target protein band is then divided by the intensity of the housekeeping
protein (B-actin). The ratio of the target protein to -actin was then used to compare target
protein abundance in samples of different treatment groups (Degasperi et al. 2014).

Statistical analysis

All results were measured as the mean + standard deviation (SD). Statistical significance for
the thermometry analysis (Fig. 4) was measured with unpaired Student’s t-test, and for the
ICP test (Fig. 3), cell death assays (Figs. 2, 5 and 6) and Western blotting results (7&8) were
determined using one-way ANOVA method followed by a Tukey post hoc test when com-
paring all pairs of groups, using SPSS version 22. *P<0.05 was considered to be statistically
significant.
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