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Background
Nanoparticles, particles smaller than 100 nm, have become increasingly important 
tools in modern medicine over the last few decades. Their applications vary from 
nanodiagnostics (Park et  al. 2017) to radiation therapy of cancer (Hainfeld et  al. 
2004; Klapproth et al. 2021) and they are now widely used to effectively deliver drugs 
to specific sites, targeting whole organs and down to single cells, in a controlled 
manner (Ghosh et  al. 2008; Mitchell et  al. 2021). Nanoparticles play a crucial role 
in advancing gene therapy, capable of curing many disorders that can not be tackled 
by traditional medicine (Whitehead et al. 2009). In recent years, pH-sensitive nan-
oparticles and a virus-mimicking pH-responsive nanoparticles in endosomes have 
attracted much attention in the problem of targeted drug delivery (Zhou et al. 2011; 
Fedotov et  al. 2022) and anti-tumor therapeutics delivery (Wannasarit et  al. 2019; 
Braga et al. 2020; Figueroa et al. 2021; Ma et al. 2021; Lodhi et al. 2021). We should 
also mention the toxicity effects induced by nanoparticles. Cytotoxicity associated 
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with them depends on their concentration, cluster distribution, the capacity for 
accumulation in cells and must be carefully balanced with the positive therapeutic 
effect (Elsaesser and Howard 2012; Yang et  al. 2021; Sukhanova et  al. 2018; Panov 
et al. 2020).

Therapeutic efficiency of nanoparticles greatly depends on their intracellular 
transport and distribution inside cells (Kong et  al. 2017). For example, due to the 
short range of secondary electrons produced by interaction of the radiation field 
with gold nanoparticles (GNPs), radiation dose enhancement crucially depends 
on the location of GNPs within cells (Lin et  al. 2015; Sung et  al. 2017). Therefore, 
the knowledge of the intracellular GNP distribution is critical for improving GNP 
enhanced radiotherapy (Haume et  al. 2016; Her et  al. 2017; Peukert et  al. 2018; 
Villagomez-Bernabe and Currell 2019; Villagomez-Bernabe et  al. 2021). An added 
complexity is that this distribution of GNPs is not uniform (Sadauskas et  al. 2009; 
Peckys and de Jonge 2011, 2014; Stefančíková et  al. 2014) and transmission elec-
tron microscopy confirms that the clusters of GNPs are predominantly found inside 
endosomes (Liu et  al. 2017). Initially, they appear within the cell as small clusters 
inside primary endocytic vesicles that deliver nanoparticles to early endosomes in 
the peripheral cytoplasm (Liu et al. 2017; Wang et al. 2016). Through the intracellu-
lar transport of early endosomes along microtubules, GNPs aggregate via endosome 
fusion and accumulate in late endosomes and lysosomes. These observations indi-
cate that the cluster formation process is mediated by endosomal fusion rather than 
GNP self-aggregation.

While there have been various studies focusing on the distribution of nanoparticles 
within a local sub-cellular cluster (e.g., Liu et al. 2017), the view usually taken is that 
the material residing between the nanoparticles within each cluster does not con-
stitute a biologically active target (Villagomez-Bernabe and Currell 2019). However, 
there are rare exceptions, for example, when the nanoparticles manage to penetrate 
into the nucleus (McCullogh et al. 2019). Except for these rare cases, analysis within 
the local effect model framework suggests that the specific placement of nanoparti-
cles is not important in determining biological outcome for a wide range of distribu-
tions (Villagomez-Bernabe et  al. 2021). However, the total loading of nanoparticles 
within each cluster and the cluster size are key parameters. To date there have been 
no reported studies about the nanoparticle loading, or equivalently, the steady-state 
density as a function of cluster size. In this work, we consider the clustering of nano-
particles inside endosomes by using the Smoluchowski’s coagulation equation with 
injections (Hayakawa 1987; Takayasu 1989; Cueille and Sire 1998). This equation was 
used by Foret et al. (2012) who studied the distributions of endocytosed low-density 
lipoprotein. They found an asymptotic (for large cluster size) steady-state density of 
endosomes within cells. This asymptotic steady-state density was found to decay, with 
increasing cluster size, as a power-law with an exponential cut-off. The purpose of this 
work is to find an exact density for steady-state cluster size distribution and compare 
it with the experimental data for all ranges of cluster distribution including the most 
important case of small cluster size. Note that recently a Smoluchowski-like equation 
has been applied to describe the stochastic fusion and fission events regulating endo-
some maturation (Castro et al. 2021).
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Mathematical model and results
In this paper, we formulate the problem of clustering of nanoparticles in terms of 
Smoluchowski’s coagulation equation with injections and find the exact steady-state 
solution describing cluster size distribution.

Clustering of nanoparticles inside cells

Following receptor-mediated endocytosis, nanoparticles are trafficked along an endo-
cytic pathway, which involves a dynamic network of vesicles. First, endocytosed nan-
oparticles enter a pool of early endosomes and then pass to the late endosomes and 
lysosomes. In our model, we assume that clustering of nanoparticles occurs as the 
result of fusion of endosomes during their intracellular transport along microtubules 
to the perinuclear region (Korabel et  al. 2021). A schematic diagram is illustrated 
in Fig. 1. It is natural to describe the fusion process and clustering of nanoparticles 
in terms of the Smoluchowski’s coagulation equation. We assume that each endo-
some contains x nanoparticles (for example, GNPs) and for simplicity we consider x 
as a continuous variable. The primary quantity of interest is the structural density of 
endosomes per cell carrying x nanoparticles, n(x, t). The total number of nanoparti-
cle-carrying endosomes in a cell can be found by integration: �(t) =

∫

∞

0 n(x, t)dx . The 
total number of nanoparticles inside a cell is given by N (t) =

∫

∞

0 xn(x, t)dx . The evo-
lution of n(x, t) is described by the Smoluchowski’s coagulation equation with injec-
tions (Foret et al. 2012):

Fig. 1  Schematic diagram of GNP endocytosis and clustering via endosome fusion. Endocytosed GNPs enter 
a pool of early endosomes and then pass to the late endosomes and lysosomes. We assume that clustering 
of nanoparticles occurs as the result of fusion of endosomes during their intracellular transport along 
microtubules
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where I(x) is the injection rate of new endosomes carrying x GNPs, γ (x) is the rate of 
exocytosis of endosomes. The first and second terms on the RHS of Eq. (1) describe the 
fusion of two endosomes with the rate K during which nanoparticles are shared. For 
example, when two endosomes carrying x and x′ nanoparticles are fused together with 
the rate K (x, x′) , they share their nanoparticles such that the newly formed endosome 
has x + x′ nanoparticles. Equation (1) should be supplemented with the initial density 
n(x, 0) = n0(x) . Continuous and discrete Smoluchowski’s equations with injections have 
been studied extensively (Hayakawa 1987; Takayasu 1989; Cueille and Sire 1998) with 
the asymptotic and scaling solutions already found for several types of the kernel K. Of 
course, the number of nanoparticles x is not continuous. Considering x as a discrete var-
iable, we arrive at the discrete Smoluchowski equation, which can be solved numerically 
(see, for example, Smith et al. 2018). However, the continuous variable x is more conven-
ient from experimental point of view because x can represent brightness/hue values of 
the dark-field images of NP clusters (Wang et al. 2016). In the experiments, the number 
of NPs in the clusters is estimated by brightness values (see “Discussion” and experimen-
tal data on gold nanoparticle distribution inside endosomes Wang et al. 2016).

In Foret et al. (2012), the authors considered a constant fusion rate K, a constant rate γ , 
and a source of cargo-loaded endosomes described by a source function

where J =
∫

∞

0 xI(x)dx is the total flux. Under these conditions, an asymptotic stationary 
power-law solution was found for x >> x0 : nst ∼ x−3/2 .

The aim of this paper is to find an exact steady-state solution for all cluster sizes: 
0 < x < ∞ under the same conditions. In what follows, we will show this exact steady-
state solution provides a better description of existing experimental data than the asymp-
totic solution of Eq. (1). It is convenient to introduce the dimensionless time variable τ and 
parameter κ :

Substituting Eq. (3) into the governing Eq. (1), we get

where

(1)

∂n

∂t
=

1

2

x
∫

0

K (x − x′, x′)n(x′, t)n(x − x′, t)dx′

− n(x, t)

∞
∫

0

K (x, x′)n(x′, t)dx′ + I(x)− γ (x)n(x, t),

(2)I(x) = (J/x20) exp(−x/x0),

(3)τ = Kt, κ =

γ

K
.

(4)
∂n

∂τ
=

1

2

x
∫

0

n(x′, τ )n(x − x′, τ )dx′ − �(τ )n(x, τ )+ Qe−x/x0
− κn(x, τ ),

Q = J/(x20K ).



Page 5 of 13Alexandrov et al. Cancer Nanotechnology           (2022) 13:15 	

Equation (4) can be analyzed using the Laplace transform with respect to the dimension-
less variable x

Equation (4) in the Laplace space reads as

The equation for the total number of GNP-carrying endosomes in a cell, 
�(τ ) =

∫

∞

0 n(x, τ )dx , can be easily obtained from Eq. (6) setting p = 0:

In the next section, we will use Eqs. (6) and (7) to find the exact analytical steady-state of 
nanoparticles cluster distribution.

Exact analytical solutions of the steady‑state model

In this section, we find the exact stationary solution of Eq. (6) which allows us to validate 
the model using experimental distributions of GNP clusters at long times (Wang et al. 
2016). As a first step let us find the stationary total number of GNP-carrying endosomes 
in a cell, �st . Equating the left-hand side of Eq. (7) to zero, we come to the quadratic 
equation for �st whose solution reads:

Equating the right-hand side of Eq. (6) to zero and taking into account Eq. (8), we obtain 
a quadratic equation for ñst whose convergent solution is given by

where a =

√

2Qx0 + κ2.
In order to find the inverse Laplace transform of Eq. (9), it is convenient to multiply 

and divide its right-hand side by the conjugate expression a+

√

a2 − 2Qx0/(1+ x0p) . 
Omitting simple mathematical transformations, we get

where

(5)ñ(p, τ ) =

∞
∫

0

n(x, τ ) exp(−px)dx.

(6)
∂ñ

∂τ
=

ñ2

2
− [�(τ )+ κ]ñ+

Qx0

1+ x0p
.

(7)d�(τ )

dτ
= −

�
2(τ )

2
− κ�(τ )+ Qx0.

(8)�st =

√

2Qx0 + κ2 − κ .

(9)ñst = a−

√

a2 −
2Qx0

1+ x0p
,

(10)ñst =
2Q

a
[

p+ b′ +
√

(p+ b′)(p+ a′)
] ,

a′ =
1

x0
−

2Q

a2
, b′ =

1

x0
.
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Surprisingly, one can find the inverse Laplace transform to Eq. (10) using the tabulated 
formula [see expression 22.95 in Ditkin and Prudnikov (1965)]. So we obtain the exact 
analytical steady-state of NP’s cluster density

where I0 and I1 are the modified Bessel functions. An example of the steady-state func-
tion nst(x) is shown in Figs. 2 and 3 for two sets of parameter values.

Discussion
Comparison with experimental distribution of GNPs

The cluster density Eq. (11) is in good agreement with experimental data on gold nano-
particle distribution inside endosomes (Wang et al. 2016). In what follows, we show that 
for clusters containing between 1 and 20 nanoparticles, distribution Eq. (11) provides a 
better description of the existing experimental data than the well-known approximate 
asymptotic power-law distribution x−3/2 (Foret et al. 2012).

Recently, Wang and colleagues (Wang et  al. 2016) measured the intracellular distri-
bution of GNPs clusters. In these experiments, 100 µ L of 50 nm-diameter gold nano-
spheres were injected into the micro-fluidic chip with cells and fresh medium were 
kept flow into the chamber to keep a fluidic environment. GNPs interacted with cells 
by adhering to cell membranes and adhered GNPs were then endocytosed into cells. By 
using the dark-field illumination, the individual GNPs were observed on the surface of 
cells as green sports. Subsequently, the number of green spots reduced, while chartreuse 
and yellow spots emerged indicating the progressive aggregation of GNPs. The color of 
spots and their brightness were used to estimate the number of GNPs in a cluster. Small 

(11)nst(x) =
Q

a
exp

(

−

a′ + b′

2
x

)[

I1

(

a′ − b′

2
x

)

+ I0

(

a′ − b′

2
x

)]

,

Fig. 2  Steady-state structural density of nanoparticles in CL1-0 cells. The exact stationary structural density 
(Eq. 11, the solid curve) and the asymptotic steady-state structural density (Eq. 13, the dashed-dotted 
curve) calculated with parameters K = 10−4 s−1, γ = 1.5 · 10−3 s−1, x0 = 2 , J = 10.5 s−1. The inset shows 
comparison of the number of endosomes with clusters containing 4–6, 7–12 and more than 12 GNPs 
obtained using the exact density nst(x) (Eq. 11) (red bars), asymptotic steady-state structural density (Eq. 13) 
(yellow bars) and the experimental data of Wang et al. (2016) (blue bars) (corresponding to number of spots 
after 8 h) for CL1-0 cells. The number of endosomes with clusters containing 4–6, 7–12 and more than 12 
GNPs was calculated using the exact density nst(x) (Eq. 11) as 

∑6
i=4 nst(i) , 

∑12
i=7 nst(i) and 

∑20
i=12 nst(i) , 

respectively. For asymptotic steady-state structural density (Eq. 13), the number of endosomes with clusters 
containing 4–6, 7–12 and more than 12 GNPs was calculated in the same way. Parameters were chosen such 
that the number of endosomes with more than 12 GNPs obtained with Eqs. (11) and (13) was similar
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GNP clusters with few GNPs show green colors and clusters with more GNPs show yel-
low-orange color.

Group 1 has 1–3 GNPs in the cluster; the second group has 4–6 GNPs; the group 3 
has 7–12 GNPs; and the group 4 with > 12 GNPs. Statistics of cluster number were col-
lected from 33 to 46 cells and an ANOVA analysis of variance was used to determine 
the p-value of less than 0.005. Group 1 clusters appeared at the cell membrane via endo-
cytosis and many of them were recycled back to the extracellular media. In our analy-
sis, group 1 plays the role of the source with constant influx described by Eq. (2). This 
approximation could lead to the discrepancy at small times and should be further tested 
in experiment. Integrating the exact solution shown in Eq. (11) over the respective range 
of x, we found the analytical prediction for the number of GNP clusters in the corre-
sponding group 2, 3 and 4 (see red bars in the insets of Figs. 2 and 3). These predictions 
were compared with the values found in experiments (Wang et al. 2016) (see blue bars in 
insets of Figs. 2 and 3). This comparison allowed us to choose parameters of the model 
(such as J, K and γ ) such that the analytical predictions of the number of GNP clusters 
matched with the experiments. Most importantly, we show that our exact analytical 
solution is more accurate than the asymptotic steady-state structural density Eq. (13) 
in predicting the number of GNP clusters (see yellow bars in the insets of Figs. 2 and 3).

Power‑law x−3/2 asymptotic of steady‑state structural density of GNP‑carrying endosomes

The approximate steady-state solution of Eq. (11), nst(x) , was obtained by Foret and co-
workers for large x [see Eq. (1) in Foret et al. (2012)]. This solution behaves as a power-
law with an exponential truncation.

Let us show that the distribution given by Eq. (11) decays as a power-law for increas-
ing cluster size x, nst(x) ∼ x−3/2 . This is a well-known result for the stationary solution 
of the both discrete and continuous Smoluchowski’s equations with injection (Hayakawa 

Fig. 3  Steady-state structural density of nanoparticles in Beas-2B cells. The analytical stationary structural 
density (Eq. 11, the solid curve) and the asymptotic steady-state structural density (Eq. 13, the dashed-dotted 
curve) calculated with parameters K = 10−4 s−1, γ = 1.5 · 10−3 s−1, x0 = 2 , J = 0.7 s−1. The inset shows 
comparison of the number of endosomes with clusters containing 4–6 and 7–12 obtained using the exact 
density nst(x) (Eq. 11) (red bars), asymptotic steady-state structural density (Eq. 13) (yellow bars) and the 
experimental data of Wang et al. (2016) (blue bars) (corresponding to number of spots after 8 h) for Beas-2B 
cells. The number of endosomes with clusters containing 4–6 and 7–12 GNPs was calculated using the exact 
density nst(x) (Eq. 11) as 

∑6
i=4 nst(i) and 

∑12
i=7 nst(i) . For asymptotic steady-state structural density (Eq. 13), 

the number of endosomes with clusters containing 4–6 and 7–12 GNPs was calculated in the same way
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1987; Takayasu 1989; Cueille and Sire 1998). Using symmetry properties of the modified 
Bessel functions I0(−z) = I0(z) , I1(−z) = −I1(z) and leading terms of their asymptotic 
expansions for large z

we obtain the well-known power-law x−3/2 asymptotic behavior of the steady-state 
structural density of GNPs

where m = κ2x−1
0 /

(

2Qx0 + κ2
)

 . In Eq. (13), the power-law has an exponential cut-off 
exp(−mx) . In Figs.  2 and 3, the asymptotic steady-state structural density Eq. (13) is 
compared with function Eq. (11). It should be emphasized that the natural appearance 
of the power-law x−3/2 with the exponential truncation exp(−mx) in cluster size distri-
bution is a critical part of the exact analytical solution found in this paper. This natural 
truncation makes the presented model much more realistic and attractive to biology and 
experimentalists.

Unsteady‑state density

The Laplace transform of the unsteady-state density as the solution of Eq. (6) can be 
obtained analytically (see “Appendix”). However, it is challenging to find its inverse 
transformation. Therefore, to study the time evolution of the structural density, n(x, τ ) , 
we will use another analytical approach, the essence of which is as follows. Since the 
density function at any time is bounded between the initial distribution n0(x) (which 
is known) and the stationary solution (11) (to which it approaches asymptotically with 
increasing time), we will use the method of stitching the analytical solution (Nayfeh 
2000; Alexandrov and Galenko 2020).

Let us approximate the time-dependent distribution function n(x, τ ) as

where b0(τ ) and bst(τ ) are the stitching functions satisfying the following conditions: 
b0(τ ) → 0 at large times and bst(τ ) → 0 at small times. The stitching functions must be 
chosen by comparing theory and experimental data. A similar approach has been used 
in Wang et al. (2016) where the integrated rate equations were introduced to describe 
the time evolution of the GNP clusters in 4 groups. To compare with the experiment in 
Wang et al. (2016), we integrate Eq. (14) to get the number of endosomes with clusters 
containing 4–6, 7–12 and more than 12 GNPs. Since the initial number of endosomes in 
each group was difficult to determine due to different conditions, we treated it as a fit-
ting parameter. We have used b0(τ ) = 1/τ , bst(τ ) = τ as the stitching functions and the 
stationary number of endosomes given in the insets of Figs. 2 and 3. The results shown 
in Figs. 4 and 5 for two cells are in good agreement with experimental data of Wang et al. 
(2016).

(12)I0(z) ≃
exp(z)
√

2πz

(

1+
1

8z

)

, I1(z) ≃
exp(z)
√

2πz

(

1−
3

8z

)

,

(13)nst(x) ≃
Q

2a

exp(−mx)
√

2π

(

Q

a2

)

−3/2

x−3/2,

(14)n(x, τ ) =
b0(τ )n0(x)+ bst(τ )nst(x)

b0(τ )+ bst(τ )
,
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Conclusion
In this paper, we studied clustering of NPs inside cells using the Smoluchowski’s 
coagulation equation with injection. We found the exact analytical solution of Eq. 
(4) giving the steady-state NP cluster size density for all cluster sizes. This cluster 
density is in good agreement with experimental data on GNP distribution inside 
endosomes. We show that for clusters containing between 1 and 20 NPs, the exact 
density provides a more accurate description of the existing experimental data than 
the well-known approximate asymptotic power-law distribution. We also obtained 
the unsteady cluster distribution and compare it with the experimental data for time 
evolution of gold nanoparticle clusters in living cells. As an extension of our results it 

Fig. 4  Time-dependent clustering of GNPs in endosomes for CL1-0 cells. Comparison of the number 
of endosomes � with clusters containing 4–6, 7–12 and more than 12 GNPs obtained by integration of 
time-dependent density n(x , τ) Eq. (14) (the dashed, the dashed-dotted and the dotted curves) with the 
experimental data of Wang et al. (2016) (the lines with symbols and error bars) for CL1-0 cells. Here τ = Kt is 
the dimensionless time. The initial number of endosomes in each group was 100 (endosomes with clusters 
containing 4–6), 100 (containing 7–12 clusters) and 15 (containing > 12 clusters). Experimental data points 
were acquired starting from t = 1 h (Wang et al. 2016)

Fig. 5  Time-dependent clustering of GNPs in endosomes for Beas-2B cells. Comparison of the number 
of endosomes � with clusters containing 4–6, 7–12 and more than 12 GNPs obtained by integration of 
time-dependent density n(x , τ) Eq. (14) (the dashed, the dashed-dotted and the dotted curves) with the 
experimental data of Wang et al. (2016) (the lines with symbols and error bars) for Beas-2B cells. Here τ = Kt 
is the dimensionless time. The initial number of endosomes in each group was 73 (endosomes with clusters 
containing 4–6), 23 (containing 7–12 clusters) and 2 (containing > 12 clusters). Experimental data points were 
acquired starting from t = 1 h (Wang et al. 2016)
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would be interesting to consider multiple stochastic mechanisms for cell-to-cell vari-
ability in nanoparticle uptake (Rees et al. 2019; Åberg et al. 2021).

Understanding the steady-state behavior of how nanoparticles cluster within intracel-
lular endosomes is important as many nanoparticle-enhanced treatments for cancer are 
dependent on when nanoparticles have saturated the cancerous cells (Lin et  al. 2015; 
Sung et al. 2017). Our model presents a theoretical framework to calculate such satu-
ration times. Since the mechanisms of cytotoxicity of NPs depend on their transport, 
clustering and accumulation inside cells, our results will be useful for insuring safety of 
NPs applications (Elsaesser and Howard 2012; Yang et al. 2021). Finally, we should men-
tion that our results are also applicable to clustering of lipid NPs which are nowadays the 
major delivery vehicles in gene therapies and RNA vaccines revolution (Editorial 2021; 
Hou et al. 2021).

Appendix
A transient behavior of endosomes can be studied using Eq. (6) supplemented with the 
initial distribution ñ(0) = ñ0 . Introducing the new function ỹ(p, τ ) = ñ(p, τ )− �(τ )− κ , 
we arrive at the following Riccati equation supplemented with the initial condition

Substituting �(τ ) = ñ at p = 0 into Eq. (6), we obtain the differential equation for � in 
the unsteady-state case:

Its solution determines a transient behavior of the total number of the GNPs carrying 
endosomes per cell:

where

In particular, for κ = 0 and �(0) = 0 , we obtain (Foret et al. 2012)

(15)
dỹ

dτ
=

ỹ2

2
+

Qx0

1+ x0p
−

(�(τ )+ κ)2

2
−

d�

dτ
,

(16)ỹ(0) = ñ0 − �(0)− κ .

(17)d�

dτ
= −

�
2

2
− κ�+ Qx0.

(18)�(τ ) =
a− κ + (a+ κ)g(τ )

1− g(τ )
,

g(τ ) =
�(0)+ κ − a

�(0)+ κ + a
exp(−aτ ), �(0) =

∞
∫

0

n0(x)dx.

�(τ ) =
√

2Qx0 tanh

(

√

Qx0

2
τ

)

,
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where 
√

2Qx0 is the steady value of �(τ ) as τ → ∞. Combining equations (15) and (17), 
we get the following equation for the shifted density of the GNPs carrying endosomes ỹ 
in the Laplace space

Its solution is given by

where

In particular, for κ = 0 and ỹ(0) = 0 , we obtain

where

An important point is that the inverse Laplace transform of the analytical solution (20) 
is unknown. This means that the inverse Laplace transform must be found numerically. 
Such a problem in itself is non-trivial and is a topic for a separate scientific study (Cohen 
2007).
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(19)
dỹ

dτ
=

ỹ2 − κ2

2
−

Qx20p

1+ x0p
.

(20)ỹ(p, τ ) = β

(

ỹ(0)+ β
)

exp(−βτ)+ ỹ(0)− β
(

ỹ(0)+ β
)

exp(−βτ)−
(

ỹ(0)− β
) ,

β =

√

κ2 +
2Qx20p

1+ x0p
.

ñ(p, τ ) = �(τ )− β0 tanh

(

β0

2
τ

)

,

β0 =

√

2Qx20p

1+ x0p
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