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Abstract 

Background:  Hypoxia-mediated radioresistance is the main obstacle to the successful 
treatment of glioblastoma (GBM). Enhancing hypoxic radiosensitivity and alleviating 
tumor hypoxia are both effective means to improve therapeutic efficacy, and the com-
bination of the two is highly desirable and meaningful.

Results:  Herein, we construct a low-dose pleiotropic radiosensitive nanoformulation 
consisting of a high-Z atomic nanocrystal core and mesoporous silica shell, surface-
modified with angiopep-2 (ANG) peptide and loaded with nitric oxide (NO) donor 
and hypoxia-activated prodrug (AQ4N). Benefiting from ANG-mediated transcytosis, 
this nanoformulation can efficiently cross the BBB and accumulate preferentially in 
the brain. Low-dose radiation triggers this nanoformulation to exert a three-pronged 
synergistic therapeutic effect through high-Z-atom-dependent dose deposition 
enhancement, NO-mediated hypoxia relief, and AQ4N-induced hypoxia-selective kill-
ing, thereby significantly inhibiting GBM in situ growth while prolonging survival and 
maintaining stable body weight in the glioma-bearing mice. Meanwhile, the proposed 
in vivo 9.4 T BOLD/DWI can realize real-time dynamic assessment of local oxygen sup-
ply and radiosensitivity to monitor the therapeutic response of GBM.

Conclusions:  This work provides a promising alternative for hypoxia-specific GBM-
targeted comprehensive therapy, noninvasive monitoring, and precise prognosis.
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Graphical Abstract

Introduction
Glioblastoma (GBM) is the most common and aggressive primary malignant brain 
tumor with high mortality and short survival (Omuro and DeAngelis 2013; Gregory 
et al. 2020; Lu et al. 2022). Surgery combined with radiotherapy (RT) and chemotherapy 
is currently the standard treatment for GBM (Du et al. 2020; Wen et al. 2020; Dong et al. 
2021). However, due to infiltrative growth and high heterogeneity, GBM is poorly cur-
able and highly prone to recurrence (Tan et al. 2020a). In addition to incomplete surgical 
resection, these adverse outcomes are largely attributed to the highly hypoxic microenvi-
ronment of gliomas (Kizaka-Kondoh et al. 2003). Tumor hypoxia not only induces tumor 
development and metastasis but also severely reduces the responsiveness of tumor tissue 
to RT and chemotherapy, ultimately leading to the failure of glioma treatment (Fu et al. 
2021; Chedeville and Madureira 2021; Shi et al. 2021). Therefore, enhancing the hypoxic 
sensitivity of glioma cells and improving the hypoxic microenvironment are both effec-
tive means to improve the efficacy of glioma, and the combination of the two is very 
desirable and meaningful.

The advent of radiosensitizers provides a potential way to enhance local radiation 
damage, typically high-Z elements that can strongly increase local radiation energy dep-
osition when accumulated in tumors (Dong et al. 2021; Zhou et al. 2022; Li et al. 2021; 
Choi et  al. 2020). Among them, nanomaterials composed of rare earth elements such 
as gadolinium (Gd) have become popular due to their excellent radiosensitivity, chemi-
cal stability, and low biotoxicity (Bulin et al. 2020; Shen et al. 2020; Stasio et al. 2006). 
Although these radiosensitizers rely on the interaction between atoms and X-rays rather 
than oxygen, the efficiency of this effect generally depends on the dose of X-rays (Lu 
et al. 2019). The high doses required to achieve the ideal RT effect of GBM will bring 
obvious toxic and side effects to normal brain tissues, so it is clinically valuable to 
achieve low-dose radiosensitization. Bioreductive drugs such as banoxantrone (AQ4N) 
are nontoxic chemotherapeutic prodrugs, which can be converted into toxic AQ4 mol-
ecules under hypoxia to selectively kill hypoxic tumor cells (Feng et al. 2017; Shen et al. 
2018; Wang et al. 2021). Therefore, AQ4N chemotherapy combined with RT is benefi-
cial to achieve satisfactory RT efficacy of GBM at lower radiation doses, while reducing 
undesired radiation toxicity.
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Enhancing the local oxygen supply in gliomas is another important way to improve the 
RT efficacy of GBM. Clinical hyperbaric oxygen therapy can rapidly increase blood oxygen 
concentration in the whole body, but it lacks tumor specificity and carries the risk of hyper-
oxia toxicity (Daruwalla and Christophi 2006). Although oxygen delivery systems have been 
developed, peroxygenation induced in this manner avoids tumor metastasis but may also 
exacerbate primary tumor growth (Song et al. 2016; Zou et al. 2021). Nitric oxide (NO) has 
received extensive attention in recent years for its unique anticancer properties (Cao et al. 
2020; Xu et al. 2020). The targeted release of NO in tumor sites can not only normalize 
the distorted tumor vascular structure and function to restore normal tumor oxygen sup-
ply, but also promote RT and chemotherapy-induced apoptosis (Zhang et al. 2020; Sung 
et al. 2019). Given that the efficiency of intracerebral delivery is limited by the blood–brain 
barrier (BBB), low-density lipoprotein receptor-related protein 1 (LRP-1), which is overex-
pressed on both BBB and glioma cells, has emerged as a key target for efficient glioma deliv-
ery (Jiang et al. 2018; Tian et al. 2015).

Nevertheless, inaccurate prognostic monitoring fails to provide an effective time win-
dow for adjusting individual GBM treatment regimens. Noninvasive magnetic resonance 
imaging (MRI) plays an increasingly prominent role in the efficacy evaluation and moni-
toring of gliomas, providing high spatial and soft tissue resolution of the brain at high field 
strengths (Xie et al. 2021; Compter et al. 2016). Conventional contrast-enhanced imaging 
only visualizes brain anatomy and is difficult to distinguish and track the infiltrating high-
grade gliomas (Xie et al. 2021). In contrast, functional imaging modality (fMRI) can provide 
rich anatomical and functional information, allowing more sensitive and accurate dynamic 
observations of glioma treatment outcomes (Huang et al. 2020). Among them, blood oxy-
genation level-dependent (BOLD) fMRI depends on paramagnetic deoxyhemoglobin con-
tent, which increases under hypoxia, resulting in decreased T2* signal, and can be used to 
assess the oxygenation status of glioma in real time (Toth et al. 2013; Iranmahboob et al. 
2016). Diffusion-weighted imaging (DWI) relies on the diffusion motion of water molecules 
in living tissue and its associated apparent diffusion coefficient (ADC) is inversely propor-
tional to tumor cell density, which can be used to sensitively evaluate glioma killing effects 
(Liu et al. 2017a; Calli et al. 2006).

Herein, we presented a low-dose pleiotropic radiosensitive nanoformulation (SLC-AN/
SN@AQ NPs)  by encapsulating AQ4N into the cavity of mesoporous silica coating on 
NaGdF4:Eu3+ (SLC) nanocrystals with surface modification of the NO donor S-nitrosothiol 
(SNO) and the LRP ligand angiopep-2 (ANG). Benefiting from ANG-mediated efficient 
brain delivery, this nanoformulation realized the three-pronged hypoxic radiosensitization 
under low-dose radiation by combining high-Z-atom (Gd and Eu)-enhanced physical dose 
deposition, NO-mediated hypoxia relief, and AQ4N-induced hypoxia-activated chemo-
therapy (Scheme 1). In vivo 9.4 T BOLD/DWI dynamically assessed this therapeutic strat-
egy by monitoring local oxygenation status and treatment response in gliomas. This study 
provided a promising candidate to comprehensively overcome radioresistance in hypoxic 
gliomas monitored by fMRI for future clinical translation.



Page 4 of 22Zhao et al. Cancer Nanotechnology            (2023) 14:8 

Materials and methods
Materials

All chemicals were purchased from Sigma-Aldrich and used without any purification. 
Angiopep-2 (ANG, TFFYGGSRGKRNNFKTEEYC) was synthesized by the Chinese 
Peptide Company. Banoxantrone dihydrochloride (AQ4N) was purchased from Abcam. 
Bicinchoninic acid (BCA) protein assay kit and nitric oxide detection kit (DAF-FM DA) 
were obtained from Beyotime Biotechnology Co., Ltd. Cell Counting Kit-8 (CCK-8) 
assay kit was purchased from New Cell & Molecular Biotech Co., Ltd. Calcein-AM and 
PI were purchased from Solarbio Science & Technology Co., Ltd. Comet assay kit was 
purchased from AmyJet Scientific, Inc. Cy5.5 NHS Ester was purchased from Thermo 
Fisher Scientific, Inc. Hypoxyprobe-1 kit (pimonidazole hydrochloride) was purchased 
from Hypoxyprobe, Inc. Anti-p53, anti-HIF-1α, anti-VEGF, and anti-MMP-2 antibodies 
were purchased from Abcam. Ultrapure water was obtained from a Milli-Q ultrapure 
water system.

Preparation of SLC‑AN/SN@AQ NPs

Gadolinium chloride (0.354 M, 2 mL), europium chloride (0.036 M, 2 mL), and sodium 
citrate (0.3 M, 8 mL) were mixed, then sodium fluoride (1.2 M, 5 mL) was dripped and 
heated at 210 °C for 1.5 h. The prepared NPs were mixed with cetyltrimethyl ammonium 
chloride (0.294  M, 10  mL) and triethanolamine (0.034  M, 2  mL), and then tetraethyl 

Scheme 1  The schematic illustration of SLC-AN/SN@AQ NPs for three-pronged hypoxic radiosensitization 
of brain gliomas under BOLD/DWI monitoring. Benefiting from angiopep-2-mediated brain delivery, 
this nanoformulation enables an efficient combination of high Z-atom-dependent dose deposition 
enhancement, NO-mediated hypoxia relief, and AQ4N-induced hypoxia-activated chemotherapy under 
low-dose radiation. Meanwhile, in vivo 9.4 T BOLD/DWI realizes real-time dynamic assessment of local oxygen 
supply and treatment response of brain gliomas
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orthosilicate (150 µL) was added and heated at 80 °C for 1 h to obtain SLC NPs. Subse-
quently, SLC NPs were suspended in ethanol, and 3-aminopropyltriethoxysilane (17.5 
µL), 3-mercaptopropyltrimethoxysilane (20 µL), and NH3·H2O (25–28%, 65 µL) were 
successively added for overnight stirring to obtain amine/sulfhydryl-functionalized SLC 
NPs. Next, ANG (6.2 µmol) was incubated with EDC (256 µmol) and NHS (420 µmol) 
at room temperature for 30 min, and 0.1 µmol NPs were added for 24 h slow stirring 
to obtain SLC-AN NPs. Then, the NPs were suspended in methanol/toluene (v/v = 4:1, 
10 mL) and stirred with t-butyl nitrite (0.88 mL) in the dark for 24 h to obtain SLC-AN/
SN NPs. Finally, AQ4N solution (19.3 µmol) was mixed with SLC-AN/SN NPs for over-
night stirring at room temperature to obtain SLC-AN/SN@AQ NPs. The resulting NPs 
at each step were centrifugally washed with deionized water at least three times before 
proceeding to the next step.

Characterization

Transmission electron microscopy (TEM, HT7700, Hitachi, Japan) was conducted 
to characterize the morphologies of NPs. Dynamic light scattering (DLS) sizes and 
zeta potentials were measured using a Zetasizer Nano system (Malvern Instruments 
Ltd., UK). Nitrogen adsorption–desorption isotherms were measured to assess the 
mesoporous performance of NPs using a TriStar II 3020 analyzer (Micromeritics Instru-
ment, USA). Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) meth-
ods were respectively used to calculate the surface area and pore-size distribution. 
UV–vis–NIR absorption spectra were acquired using a UV-3600 Plus Shimadzu spec-
trophotometer (Shimadzu, Co., Japan). The content of conjugated ANG on NPs was 
determined by the BCA protein assay kit.

NO production and AQ4N release in vitro

NO production in vitro was quantified using the Nitric Oxide Assay Kit. SLC-AN NPs, 
SLC-AN/SN NPs, and SLC-AN/SN@AQ NPs suspensions were irradiated with X-ray 
radiation at 1  Gy using a clinical electron linear accelerator (ELEKTA Presice, Eng-
land) with 6 MeV at 200 cGy/min, and then reacted with Griess reagent to determine 
the absorbance at 540 nm using a multifunctional microplate reader (Thermo Scientific, 
USA) to calculate NO concentration (µM). To assess the drug release behavior of AQ4N 
in vitro, SLC-AN/SN@AQ NPs were encapsulated in dialysis bags (MWCO 3500) and 
placed into phosphate buffer (pH 7.4) for gentle shaking at 37 °C at 100 rpm. At certain 
time intervals, 200 µL incubation medium was withdrawn and tested the characteris-
tic UV–vis absorbance of AQ4N at 610  nm, and then poured back into the medium. 
The cumulative release percentage of AQ4N from SLC-AN/SN@AQ NPs was calculated 
as follows: Wrel × 100%/Wini (Wrel: the released amount, Wini: the initial amount). To 
assess the release behavior under RT, SLC-AN/SN@AQ NPs suspensions were exposed 
to X-ray radiation at 1 Gy, and the above dialysis analysis was performed.

Cell viability

Human glioma cells U87MG were obtained from the School of Basic Medicine Sciences 
of Tianjin Medical University and seeded in a 96-well plate at 5 × 103 cells per well for 
24 h normoxic (21% O2) incubation at 37 °C with 5% CO2. Then, the U87MG cells were 
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incubated with SLC-AN NPs, SLC-AN/SN NPs, and SLC-AN/SN@AQ NPs at various 
concentrations in normoxic or hypoxic (2% O2) condition for 24 h. After being replaced 
with the fresh medium, the cells were cultured for another 24 h in normoxic conditions. 
Cell Counting Kit-8 (CCK-8) solution was then added and cultured at 37 °C for 4 h. The 
absorbance at 450 nm was recorded using a multifunctional microplate reader to deter-
mine the cell viabilities.

Flow cytometry analysis

U87MG cells were seeded at 2 × 105 cells per well in 6-well plates for 24 h culture and 
incubated with SLC-AN NPs, SLC-AN/SN NPs, and SLC-AN/SN@AQ NPs at 10  μg/
mL in normoxic or hypoxic condition for another 24  h. After being exposed to X-ray 
radiation at 1  Gy, the cell culture medium was replaced with the NO probe solution 
(3-amino-4-aminomethyl-2’,7’-difluorescein diacetate, DAF-FM DA) for 30 min culture 
at 37 °C. Then, the cells were washed with deionized water at least three times and col-
lected to detect the fluorescent intensity of produced NO using flow cytometry (BD 
FACSCalibur, USA).

Colony formation assay

Human glioma cells U87MG and U251 were obtained from the School of Basic Medi-
cine Sciences of Tianjin Medical University and respectively seeded at 5 × 104 cells per 
well in 6-well plates and cultured for 24 h. After incubated with SLC-AN NPs, SLC-AN/
SN NPs, and SLC-AN/SN@AQ NPs at 10 μg/mL in normoxic or hypoxic conditions for 
24 h, the cells were exposed to X-ray radiation at 1 Gy and then transferred to a new six-
well plate for 7 days in normoxic condition. Then, the cells were fixed with formalin and 
stained with 0.5% crystal violet. Colonies containing more than 50 cells were counted to 
calculate the survival fractions (SF).

Comet assay

After being exposed to X-ray radiation at 1 Gy, NPs-treated U87MG and U251 cells were 
respectively prepared into single-cell suspensions at 2 × 104/mL and then immobilized 
in a bed of low melting point agarose on a specially treated Comet Slide. Following gen-
tle cell lysis at 4 °C overnight, the slides were gently washed and immersed in an alka-
line DNA precipitation solution for 30 min. Then, the electrophoresis was performed for 
20 min under 20 V and 200 mA. The slides were dried and stained in ethidium bromide 
for 30 min. The cells with comet tails were observed by an inverted fluorescence micro-
scope (Olympus, Japan) and the tail length was analyzed using CASP software (Poland).

Calcein AM/PI dual staining

U87MG and U251 cells were respectively seeded at 4 × 105 cells per well in 24-well 
plates and cultured overnight. SLC-AN NPs, SLC-AN/SN NPs, and SLC-AN/SN@AQ 
NPs at 10 μg/mL were incubated with U87MG cells for 12 h and then exposed to X-ray 
radiation at 1  Gy. The cells without NPs treatment under X-ray radiation were used 
as contrast. Then, the cells were stained with Calcein-AM and PI and observed under 
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an inverted fluorescence microscope. The relative PI level was analyzed using Image J 
software.

Transwell migration assay

To construct the BBB in  vitro model, bEnd.3 cells were seeded at 8 × 104 cells/well 
on 24-well transwells with permeable polyester membrane inserts (Corning). After 
two-week cultures, the integrity of bEnd.3 monolayer was assessed by measuring the 
transepithelial electrical resistance (TEER) value using an epithelial voltohmmeter (Mil-
licell-RES, Millipore, USA). The bEnd.3 cells with a TEER value of above 150 Ω·cm2 were 
selected for performing in  vitro BBB transcytosis. SLC-AN/SN@AQ NPs were intro-
duced into the apical chamber at 100 μg/mL and the TEER value was measured during 
24 h incubation at 37 °C. Then, the cells in the lower chamber were collected to detect 
the Ln (Gd + Eu) content by inductively coupled plasma optical emission spectrometry 
(ICP-OES). Non-ANG modified NPs were used as contrast. In the blocking study, ANG 
was added at 5 mg/mL to the apical chamber for 3 h before the incubation of NPs, fol-
lowed by the above-mentioned steps.

Animals and brain glioma orthotopic xenograft model

All animal experiments were performed according to Tianjin Medical University 
Guidelines for Animal Research and were approved by Tianjin Medical University Ani-
mal Care and Use Committee. BALB/c-nude mice (female, 6–8 weeks old, 20 g) were 
purchased from Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China). 
5 × 105 U87MG cells were implanted into the right lateral ventricle of the mice by using 
a stereotactic fixation instrument. After 14 days, the glioma orthotopic xenograft model 
was successfully established, namely the glioma-bearing mice.

Pharmacokinetics and biodistribution studies

The glioma-bearing mice were intravenously injected with SLC-AN/SN@AQ NPs at 
25 mg/kg, and the plasma samples and brain tissues were collected 6 h, 12 h, 24 h, and 
48 h after the injection. After dissolved in digestive chloroazotic acid (HNO3/HCl = 3/1), 
the amount of lanthanides (Ln: Gd + Eu) was quantified by ICP-OES. At 24  h post-
injection, the brain tissues and major organs (heart, liver, spleen, lung, kidney) were 
harvested for digestion and the quantitative biodistributions of Ln were measured by 
inductively coupled plasma optical emission spectrometry (ICP-OES). Then, SLC-AN/
SN@AQ NPs were pre-labeled with Cy5.5, and then intravenously injected into the gli-
oma-bearing mice. At 24 h post-injection, the images of the living mice were taken by 
IVIS Imaging System (IVIS Spectrum, PerkinElmer, USA). Then, the brain tissues and 
major organs were harvested for ex vivo imaging, and the fluorescence intensity of the 
Cy5.5 signal was measured by IVIS Image Software. In these experiments, SLC-SN@AQ 
NPs were used as a contrast.

9.4 T MRI scanning in vivo

The glioma-bearing mice were divided into five groups  randomly. The experimental 
group was intravenously injected with 0.9% NaCl, SLC-AN NPs, SLC-AN/SN NPs, and 
SLC-AN/SN@AQ NPs at 25 mg/kg, respectively, and then subjected to 1 Gy on a clinical 
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electron linear accelerator with 6 MeV at 200 cGy min−1 using a 2 cm × 2 cm radiation 
field under a source-to-skin distance (SSD) of 80 cm to cover the entire right brain con-
taining glioma region of interest (ROI). The group was only intravenously injected with 
0.9% NaCl without radiotherapy as control. Before and 7, 14 days after radiation, in vivo 
MR images of mice were acquired by a 9.4 T MRI scanner (Bruker BioSpec 94/30 USR, 
Germany) with the following scan parameters: (1) T2-weighted sequence: TR = 2900 ms, 
TE = 33  ms, slice thickness = 0.5  mm, the field of view (FOV) = 20  mm × 20  mm, 15 
contiguous slices. Imaging tumor volumes were calculated as the sum of the manually 
drawn glioma ROI multiplied by the slice thickness for each slice. (2) BOLD sequence: 
TR = 705  ms, TE = 4  ms, slice thickness = 0.5  mm, FOV = 15  mm × 15  mm, Flip 
Angle = 25°, 15 contiguous slices. T2* values were calculated as the mean value of the gli-
oma ROI for all slices. (3) DWI sequence: SE-EPI sequence. TR = 3000 ms, TE = 30 ms, 
slice thickness = 0.5 mm, FOV = 18 mm × 18 mm, Flip Angle = 90°, 20 contiguous slices. 
ADC values were calculated with reference to images with b values of 1000 s mm−2 and 
0 s mm−2.

Anti‑glioma efficacy in vivo

24 h after intravenous administration of SLC-AN NPs, SLC-AN/SN NPs, and SLC-AN/
SN@AQ NPs at 25 mg/kg, the brains of the glioma-bearing mice were exposed to X-ray 
radiation at 1 Gy. During 14 days of treatments, the body weights of the glioma-bear-
ing mice were measured every 3 days. After 14 days, the glioma-bearing brain tissues 
were removed and fixed for hematoxylin and eosin (H&E) and terminal deoxynucleoti-
dyl transferase dUTP nick end labeling (TUNEL) staining. In addition, other brain slices 
were prepared and blocked with normal goat serum. Then, the slices were incubated 
with the primary antibodies including rabbit monoclonal anti-p53, anti-HIF-1α, anti-
VEGF, and anti-MMP-2 antibodies. Biotin-conjugated goat anti-rabbit IgG (secondary 
antibody, Abcam) was subsequently added, followed by 3,3’-diaminobenzidine (DAB) 
staining and hematoxylin counterstaining successively. Immunohistochemical images 
were acquired using a fluorescence microscope (BX51T-PHD-J11, Olympus). The sur-
vival rate of mice was measured as the percentage of the number of mice alive at indi-
cated time points to the total number of original mice.

In vivo biosafety analysis

After 14  days of treatments, routine blood and serum biochemistry were detected by 
blood samples collected from the retro-orbital plexus of the glioma-bearing mice. Then, 
the mice were killed, and the glioma-free left brain tissues and major organs includ-
ing heart, liver, spleen, lung, and kidney were collected for hematoxylin–eosin (H&E) 
staining.

Statistical analysis

Data are presented as means ± standard deviation (SD) and significance was analyzed by 
a Student’s t-test (two-tailed) using OriginPro (OriginLab Corporation, USA). *p < 0.05, 
**p < 0.01, ***p < 0.001.
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Results and discussion
Preparation and characterization of SLC‑AN/SN@AQ NPs

In this nanoformulation, NaGdF4:Eu3+ (SLC) nanocrystals served as high-Z cores for 
physical dose deposition, and mesoporous silica shells were surface modified with amino 
and sulfhydryl groups to conjugate ANG and SNO for BBB crossing and glioma targeting 
as well as radiation-responsive NO release, respectively. AQ4N was finally loaded into 
the cavity of the mesoporous silica shell to obtain SLC-AN/SN@AQ NPs (Additional 
file 1: Fig. S1). As shown in the TEM image (Fig. 1A), SLC-AN/SN@AQ NPs exhibited 
a core–shell structure with a core of ~ 93 nm and a shell of ~ 25 nm. DLS results showed 
that the average particle diameter after each step of surface modification increased to 
varied extents, and the final particle diameter of SLC-AN/SN@AQ NPs was ~ 142  nm 
with uniform particle size distribution (Fig.  1B). Nitrogen adsorption–desorption iso-
therms further confirmed the mesoporous structure of the shells, characterized by a 
BET surface area of 361 m2 g−1 and a BJH pore size of 4.3 nm (Fig. 1C).

ANG conjugation positively shifted the zeta potential of SLC NPs from − 8.5 mV to 
− 2.4 mV, further SNO conjugation shifted it negatively to − 5.6 mV, and the final sur-
face charge of this nanoformulation after AQ4N loading was about − 5.8 mV. BCA pro-
tein assay was used to determine the content of ANG conjugated on the NPs, which was 
calculated to be 96.7 μg/mg (Additional file 1: Fig. S2), confirming the successful surface 
modification of ANG on the NPs. UV–vis–NIR spectra showed that SLC-AN/SN@AQ 
NPs exhibited the obvious characteristic absorption bands for SNO at 350–380 nm and 
characteristic absorbance peak for AQ4N at 610  nm, which confirmed the successful 
SNO conjugation and AQ4N loading (Fig. 1D). The loading content (DLC) of AQ4N in 
SLC-AN/SN@AQ NPs was determined to be 8.79%. In addition, no significant change in 
DLS particle size was observed within 14 days after incubation with SLC-AN/SN@AQ 
NPs in different biological media, showing excellent particle size stability (Additional 
file 1: Fig. S3).

Fig. 1  Characterization of SLC-AN/SN@AQ NPs. A TEM image. Scale bar = 200 nm. B DLS size distributions. 
C, D UV–vis-NIR absorption spectra. E NO produced by different NPs with or without X-ray radiation. F 
Cumulative release profile of AQ4N from SLC-AN/SN@AQ NPs with or without X-ray radiation. Radiation dose: 
1 Gy
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Next, we studied the radiation-responsive NO release by SLC-AN/SN@AQ NPs using 
a nitrate/nitrite assay kit. SLC-AN NPs did not produce NO with or without low-dose 
X-ray radiation (1 Gy), while all SNO-conjugated NPs produced a large amount of NO 
only under radiation (Fig.  1E). The above results confirmed the specific NO release 
induced by low-dose radiation and further validated the successful conjugation of SNO. 
Furthermore, we monitored the release profiles of AQ4N from SLC-AN/SN@AQ NPs. 
Without radiation, ~ 42% AQ4N was released from NPs after 24  h incubation in PBS. 
In contrast, 1 Gy radiation promoted the release behavior of AQ4N, and the cumulative 
drug release was ~ 63% after 24 h (Fig. 1F). This might be due to the decrease of a steric 
hindrance after the release of NO by the chemical bond breaking of SNO, which acceler-
ated the release of AQ4N.

Low‑dose synergistic radiosensitive effect on hypoxic U87MG cells

To evaluate the hypoxic radiosensitive effect, human glioma cells U87MG were incu-
bated with SLC-AN/SN@AQ NPs under both hypoxic and normoxic conditions, fol-
lowed by low-dose X-ray radiation (1 Gy). To construct the in vitro cell model of brain 
gliomas, the U87MG cell line was selected in this work because it is the commonly used 
human high-grade glioma cell line in many nanomedical studies for the treatment of 
mouse brain gliomas (Brighi et  al. 2020; Zhang et  al. 2021; Lam et  al. 2018). Further-
more, as previously reported, most of the oxygen concentrations in brain gliomas under 
hypoxia fluctuate between 0.5% and 2.5%, so the 2% oxygen level that has been exten-
sively adopted in many nanomedicine-related studies was selected to construct the 
in vitro hypoxic glioma model in this work (Bar et al. 2010; Liu et al. 2017b; Tan et al. 
2020b).

For all studied NPs, there was no significant effect on cell viability at concentrations 
up to 100 µg/mL under both hypoxic and normoxic conditions (Additional file 1: Fig. 
S4), indicating low cytotoxicity. Then, radiation-induced NO production was analyzed 
in U87MG cells treated with SLC-AN/SN@AQ NPs by quantitatively detecting DAF-
FM-labeled fluorescence through flow cytometry. It was shown that only SNO-conju-
gated NP treatment elicited high intracellular NO production under either normoxia or 
hypoxia, compared to almost no NO production after low-dose RT alone and SLC-AN 
NP treatment, regardless of normoxia or hypoxia. (Fig.  2A and Additional file  1: Fig. 
S5). Hypoxia-activated cytotoxicity of SLC-AN/SN@AQ NPs was then detected using 
the standard CCK-8 assay. Compared with the limited killing of normoxic U87MG cells 
by SLC-AN/SN@AQ NPs, their half-maximal inhibitory concentration (IC50) values 
against hypoxic cells dropped sharply to about 10 μg/mL (Fig. 2B). These results demon-
strated that this nanoformulation could trigger excellent radiation-induced NO release 
and selective chemo-killing under hypoxia.

The low-dose synergistic radiosensitive effect induced by this nanoformulation on 
hypoxic U87MG cells was evaluated by the survival fractions (SF) using colony for-
mation assay (Fig.  2C). The SF values of all cells after low-dose RT alone remained 
still high above 85%, and SLC-AN NPs showed slightly lower SF values in normoxic 
cells than in hypoxic cells. This phenomenon illustrated the huge limitation of 
hypoxia on low-dose RT and low-dose physical radiosensitization (Song et al. 2017). 
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The radiation damage to hypoxic cells was significantly greater than that of normoxic 
cells under high concentrations of NO produced, showing the enhancement effect of 
NO on hypoxic radiosensitization. Further AQ4N release resulted in the lowest SF 
values, especially in hypoxic cells, indicating that SLC-AN/SN@AQ NPs exhibited the 
most potent inhibition of hypoxic glioma cell proliferation under low-dose radiation 
by combining the therapeutic effects of NO and AQ4N.

Potential DNA damage induced by this synergistic hypoxic radiosensitization was 
subsequently detected by the comet assay. It was found that both low-dose RT alone 
and RT + SLC-AN NPs groups induced only a small amount of free DNA fragments 
in normoxic cells, and almost none were observed in hypoxic cells. RT + SLC-AN/
SN NPs group exhibited a longer comet-like appearance with no significant difference 
between hypoxic and normoxic conditions, suggesting that NO production during 
low-dose RT could accelerate DNA damage in hypoxic cells. The longest comet tails 
were observed in the RT + SLC-AN/SN@AQ NPs group and were more pronounced 
in hypoxic cells than in normoxic cells, attributed to the selective hypoxic killing 
effect of AQ4N (Fig. 2D). As shown in Calcein-AM/PI dual staining, only SNO-con-
taining NP sensitization treatment increased the radiation killing effect on hypoxic 

Fig. 2  Low-dose synergistic radiosensitive effect on hypoxic U87MG cells. A NO production in cells under 
radiation under hypoxic conditions. B Cytotoxicity of SLC-AN/SN@AQ NPs to U87MG cells under normoxic 
and hypoxic conditions measured by CCK-8 assay. C Multi-effect synergistic effect evaluated by colony 
formation assay. D DNA damage assessed by Comet assay. Insert: the control group. E Live (Green) and dead 
(Red) cells labeled by Calcein AM/PI dual staining. Radiation dose: 1 Gy
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cells to the same level as that of normoxic cells, while SLC-AN/SN@AQ NP sensitiza-
tion treatment caused almost complete cell death under both normoxic and hypoxic 
conditions (Fig.  2E). Taken together, these results demonstrated that SLC-AN/SN@
AQ NPs could induce efficient radiation killing on hypoxic glioma cells by combin-
ing dose deposition enhancement, NO-mediated sensitization, and hypoxia-activated 
chemotherapy.

Therapeutic response of U87MG and U251 cell lines

To preliminarily evaluate the consistency of the efficacy of this nanoformulation against 
different GBM cell lines, we first conducted a screening analysis of journal articles in the 
field of nanomedicine to identify the cell lines most commonly used for nanoparticle-
based RT of GBM. The Clarivate Analytics Web of Science was searched with “nano” 
and “treatment” as the keywords for related reports in the last 3 years (2020–2022), and 
then filtrated with “glioma” to yield 559 papers. After removing review articles and con-
ference abstracts, there were 39 papers involving RT, among which 32 papers involved 
in vivo studies (Fig. 3A). Of these 32 reports, 12 articles used U87MG cells and 7 articles 
used U251 cells for in vitro and in vivo modeling, both of which are the most common 
human malignant GBM cell lines, while the remaining few articles used mouse (GL261) 
or rat (C6 and F98) glioma cell lines (Fig.  3A). Since human GBM cell lines are more 
conducive to future preclinical studies, U87MG and U251 cells that accounted for more 
than 50% of nanomedical studies are worthy of attention and investigation to assess 
therapeutic response.

Fig. 3  Therapeutic response of the two most common GBM cell lines U87MG and U251 to low-dose 
pleiotropic hypoxic radiosensitive nanoformulation. A The illustration shows journal articles searched from 
the Web of Science in the last 3 years (2020–2022) to identify cell lines for nanoparticle-based RT of GBM. B–D 
The difference between U87 MG and U251 cells on this multi-effect synergistic effect of SLC-AN/SN@AQ NPs 
under radiation was evaluated by the following ratios calculated under normoxic and hypoxic conditions, 
including B survival fraction (SF) using colony formation assay, C potential DNA damage represented by tail 
length (TL) using the comet assay, and D cell death represented by relative PI level using Calcein-AM/PI dual 
staining
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Based on the excellent multi-effect synergistic effect by SLC-AN/SN@AQ NPs shown 
above in U87MG cells, we further observed this therapeutic response in U251 cells. 
The differences between U87 MG and U251 cells were analyzed by evaluating survival 
fractions (SF) using colony formation assay, potential DNA damage represented by tail 
length (TL) using the comet assay, and cell death represented by relative PI level using 
Calcein-AM/PI dual staining. The ratios of SF (Fig. 3B), TL (Fig. 3C), and relative PI level 
(Fig. 3D) between hypoxic and normoxic U87MG and U251 cells showed the same trend 
in different treatment groups. Both low-dose RT and RT + SLC-AN NPs groups showed 
positive values of SF ratios and negative values of TL ratios and relative PI level ratios, 
indicating uncontrollable cell proliferation under hypoxia. In contrast, RT + SLC-AN/
SN NPs and RT + SLC-AN/SN@AQ NPs groups exhibited progressively decreasing neg-
ative values of SF ratios, while the values of TL ratios and relative PI level ratios tended 
to be positive, representing the significantly enhanced hypoxic sensitization effect. It 
was noted that the therapeutic response of U251 cells was slightly weaker than that of 
U87MG cells, but also showed good efficacy. These results provided preliminary evi-
dence that SLC-AN/SN@AQ NPs could exert similar therapeutic responses against dif-
ferent GBM cell lines.

BBB transport and brain targeting in vitro and in vivo

In order to verify the transport efficacy of ANG-modified NPs across BBB, the compact 
monolayers of mouse brain endothelial cells (bEnd.3) were used as an in vitro BBB model 
for transwell migration assay (Liu et al. 2020). TEER values measured before and after 
different treatments were all above 150 Ω·cm2 (Additional file 1: Fig. S6), indicating the 
integrity of the bEnd.3 cell monolayer during the experiments and the successful con-
struction of in vitro BBB model. After NP treatments, Ln content in the cells of the lower 
layer was measured by ICP-OES to analyze the penetration percentage of NPs through 
in vitro BBB model. Without ANG modification, only 3.6% of SLC-SN@AQ NPs pen-
etrated through the BBB layer. Remarkably, the penetration percentage of SLC-AN/SN@
AQ NPs was detected to be 16.7%, which was much higher than that of ANG-unmodi-
fied NPs (Fig. 4A). To further verify ANG-mediated transcytosis, excess free ANG was 
added before NP treatment, and the penetration percentage of SLC-AN/SN@AQ NPs 
was significantly reduced to 8.6% (Fig. 4A). This phenomenon suggested that free ANG 
pretreatment has bound a large number of LRP receptors on the BBB, thereby prevent-
ing subsequent ANG-mediated NP transport. These results demonstrated that this nan-
oformulation could efficiently cross the BBB thanks to ANG surface modification.

The in vivo BBB-targeting efficacy was evaluated by detecting the temporal concentra-
tions of Ln content in the plasma and brain of the glioma-bearing mice intravenously 
injected with SLC-AN/SN@AQ NPs, compared to SLC-SN@AQ NPs without ANG 
modification (Fig. 4B). It was found that the plasma concentration of ANG-containing 
NPs decayed much more slowly over time than that of ANG-free NPs, suggesting that 
ANG conferred a longer circulating half-life on this nanoformulation. Notably, the 
administration of ANG-containing NPs resulted in significantly elevated Ln levels in the 
brain compared to ANG-free NPs. Mice treated with ANG-free NPs had barely detect-
able Ln concentrations in the brain within 48 h after injection. In sharp contrast, brain 
Ln content was 13.5-fold higher in mice treated with ANG-containing NPs than in mice 
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treated with ANG-free NPs at 24 h post-injection and remained relatively high at 48 h 
post-injection (Fig. 4B).

Then, the in vivo fluorescence imaging of the glioma-bearing mice was performed 24 h 
after intravenous administration of Cy5.5-labeled SLC-AN/SN@AQ NPs, compared with 
Cy5.5-labeled SLC-SN@AQ NPs (Fig. 4C). As expected, the brain fluorescence intensity 
of mice treated with ANG-containing NPs was 3.7-fold higher than that of mice treated 
with ANG-free NPs (Fig. 4D). Similar phenomenon was also observed in the ex vivo flu-
orescence images of the resected brain tissues (Fig. 4C), confirming ANG-mediated BBB 
crossing. As shown in the ex vivo fluorescence images of other organs, mice treated with 
ANG-free NPs showed more pronounced accumulation in the liver and kidney than 
ANG-containing NPs-treated mice (Fig. 4C), which was also observed by measuring Ln 
content in these organs (Additional file 1: Fig. S7). These results demonstrated that ANG 
could facilitate the preferential accumulation of this nanoformulation in glioma-bearing 
brains and avoid its rapid clearance by the mononuclear phagocytosis system and renal 
metabolism.

BOLD/DWI monitoring in vivo

Based on the excellent brain-targeting ability, SLC-AN/SN@AQ NPs were intravenously 
administered to the glioma-bearing mice, followed by low-dose RT at 24 h post-injec-
tion. In vivo 9.4 T BOLD/DWI was applied for noninvasive efficacy monitoring before 
and after treatment (Fig.  5A). T2-weighted images were first used to localize glioma 
regions in the brain as ROIs, and then BOLD/DWI signal pseudo-color maps were 
obtained to quantify T2* and ADC values in glioma ROIs. The tumor volumes calcu-
lated from the T2 images showed rampant tumor growth in the control and low-dose RT 

Fig. 4  BBB transport and brain targeting in vitro and in vivo. A Penetration percentage of SLC-SN@AQ 
NPs and SLC-AN/SN@AQ NPs through in vitro BBB model. Free ANG pretreatment was used as blocking. B 
Ln content in the plasma and brain of the glioma-bearing mice determined by ICP-OES after intravenous 
injection of NPs with and without ANG modification. C Fluorescence images of the living glioma-bearing 
mice and their ex vivo tissues at 24 h post-injection of Cy5.5-labeled NPs with and without ANG modification. 
D Quantitative analysis of fluorescence intensity in brains in (C)
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groups. The sequential introduction of radiosensitive therapeutic components resulted 
in the continuous shrinking of tumor volume, among which the tumor size in the SLC-
AN/SN@AQ NPs + RT group was the smallest and remained almost unchanged com-
pared with that before treatment (Fig. 5B–G), showing a very encouraging brain glioma 
inhibition.

Compared with the decreasing ADC values of the control group over time (Fig. 5B), 
the ADC values of the RT group first increased at 7  days after treatment and then 
decreased at 14 days after treatment (Fig. 5C, H), indicating that low-dose radiation 
was not enough to completely kill tumor cells and will cause recurrence (Ni et  al. 
2018). The ADC values of the SLC-AN NPs + RT group did not differ much before 
and after treatment (Fig. 5D), indicating its limited in vivo radiosensitive effect. Both 
SLC-AN/SN NPs + RT and SLC-AN/SN@AQ NPs + RT groups showed a slight grad-
ual increase in the ADC values (Fig. 5E, F), and the latter exhibited the highest ADC 
value at 14 days after treatment (Fig. 5H), corresponding to a very small tumor size 
shown by T2-weighted images. These results suggested that DWI could monitor the 
radiosensitivity and efficacy of brain glioma therapy in vivo by detecting ADC values 
that are sensitive to changes in tumor density.

The T2* values in the control group showed a first increase and then a decrease with 
time (Fig.  5B, I), indicating that the microvessels gradually established with tumor 
growth tend to be damaged and cause hypoxia. The overall level of T2* values after 
RT alone treatment was lower than that of the control group (Fig. 5C, I), indicating 
that low-dose X-rays would further damage blood vessels and reduce local blood oxy-
gen. With the sequential introduction of radiosensitive therapeutic components, the 
T2* values continued to increase over time after treatment (Fig. 5D–F), indicating a 

Fig. 5  BOLD/DWI monitoring in vivo. A Schematic diagram of treatment and imaging. B–F T2-weighted, 
ADC-mapping, and T2*-mapping whole-brain images for various treatments. G Imaging calculated glioma 
volume. H Glioma ADC value analysis. I Glioma T2* value analysis
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significantly improved oxygen supply to gliomas. SLC-AN/SN@AQ NPs + RT group 
exhibited stronger hypoxia alleviation than the SLC-AN/SN NPs + RT group (Fig. 5I), 
which might be because the reduced tumor density caused by AQ4N selective hypoxic 
killing facilitated the infiltration of large amounts of NO released under radiation into 
solid gliomas. The above results suggested that BOLD imaging is an effective means 
to monitor oxygen supply inside brain gliomas and to provide more adequate support 
for in vivo accurate efficacy assessment.

Evaluation of synergistic anti‑glioma efficacy in vivo

To objectively assess the synergistic anti-glioma efficacy of SLC-AN/SN@AQ NPs 
under low-dose RT, the intact brain tissues of mice in all groups were dissected 
14  days after treatment. H&E staining of whole brain sections demonstrated a very 
pronounced stepwise suppression of glioma size with the sequential introduction 
of radiosensitive therapeutic components (Fig.  6A), consistent with MRI results 
(Fig. 5B–G). Magnified H&E images and TUNEL staining showed substantial necrosis 
and apoptosis of glioma cells in the SLC-AN/SN@AQ NPs + RT group, which was 
slightly more than that in SLC-AN/SN NPs + RT group, but significantly more than 
that in other three groups (Fig. 6A), indicating the remarkable killing effect of brain 
gliomas by this nanoformulation.

After orthotopic implantation of brain gliomas, the body weight and survival of mice 
were observed until all mice died. The body weights of mice in the control group and RT 
alone group all decreased significantly, with little difference from each other (Fig. 6B). 
All studied NP treatment showed significant improvement in body weight, among which 
the last mice in SLC-AN/SN@AQ NPs + RT group maintained a relatively normal body 
weight before dying (Fig. 6B). Kaplan–Meier survival curve showed that the median sur-
vival rates of mice in the control group (21 d) and RT group (23 d) were similar and 
slightly higher in SLC-AN NPs + RT group (28 d) (Fig.  6C). These rapid deaths were 
attributed to the failure of low-dose RT and physical radiosensitization alone to sup-
press the rapid proliferation and invasion of gliomas (Brighi et al. 2020; Lam et al. 2018). 
However, the survival rates of mice in the SLC-AN/SN NPs + RT group and SLC-AN/
SN@AQ NPs + RT group were significantly improved to a median of 37 and 46  days, 
respectively, much longer than the other treatments (Fig. 6C). The significance results 
of this Kaplan–Meier survival analysis are shown in Additional file  1: Table  S1. These 
results suggested that this nanoformulation-mediated synergistic therapy could effec-
tively improve the quality of life of glioma-bearing mice.

Furthermore, immunohistochemical staining was performed to analyze the changes 
of HIF1α, p53, VEGF, and MMP-2 levels in glioma areas of brain sections to reveal 
the underlying mechanism preliminarily. As a hypoxia-activated important transcrip-
tion factor (Wu et  al. 2017), HIF1α (hypoxia inducible factor-1) was highly expressed 
in the control and RT groups, slightly down-regulated in SLC-AN NPs + RT group, and 
significantly down-regulated in SLC-AN/SN NPs + RT group and SLC-AN/SN@AQ 
NPs + RT group (Fig.  6D), further validating the effective hypoxia relief in brain glio-
mas. In contrast to HIF1α down-regulation, p53, an indicator of apoptosis (Yang et al. 
2014), was most significantly up-regulated in SLC-AN/SN@AQ NPs + RT group, further 
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confirming the superior synergistic anti-glioma efficacy of this nanoformulation under 
low-dose RT. In addition, SLC-AN/SN@AQ NPs + RT group showed the lowest levels 
of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 (MMP-2) 
(Fig. 6D), suggesting that this nanoformulation has the potential to inhibit glioma vascu-
lar angiogenesis and migration (Hu et al. 2017; Wang et al. 2019; Zeng et al. 2021).

Fig. 6  Evaluation of synergistic anti-glioma efficacy in vivo. A Whole-brain H&E staining images (Scale 
bar = 200 μm) with magnified observation (Scale bar = 100 μm) and TUNEL staining images (Scale 
bar = 100 μm). B Body weight curves. C Survival rates. D Immunohistochemical staining images of p53, 
HIF1α, VEGF, and MMP-2 of the tumor areas in the brains of the glioma-bearing mice (Scale bar = 100 μm)



Page 18 of 22Zhao et al. Cancer Nanotechnology            (2023) 14:8 

In vivo biosafety analysis

To investigate the potential tissue toxicity of this nanoformulation, the brains and major 
organs of the glioma-bearing mice were collected 14 days after intravenous injection and 
14 days after treatment with SLC-AN/SN@AQ NPs, respectively. H&E staining revealed 
no significant histological damage in important brain regions including the brainstem, 
cortex, striatum, and hippocampus in the glioma-free hemisphere compared with the 
control group (Fig. 7A), suggesting that SLC-AN/SN@AQ NPs treatment did not cause 
intracerebral lesions. Meanwhile, no side effects were found in major organs including 
the heart, liver, spleen, lung, and kidney (Additional file 1: Fig. S8), indicating the good 

Fig. 7  In vivo biosafety analysis. A H&E-stained images of important brain regions from the glioma-free 
hemisphere in the indicated treatment groups (Scale bar = 200 μm). B–G Routine blood analysis: WBC, RBC, 
HGB, MCH, PLT, LYM. (H-M) Serum biochemistry analysis: ALT, AST, TBIL, ALB, BUN, CREA
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biocompatibility of SLC-AN/SN@AQ NPs. Furthermore, the blood samples were col-
lected for routine blood and serum biochemistry analysis. The common blood param-
eters, including white blood cells (WBC), red blood cells (RBC), hemoglobin (HGB), 
mean corpuscular hemoglobin (MCH), platelets (PLT), and lymphocytes (LYM), showed 
no significant changes compared to the control group (Fig.  7B–G), indicating the low 
hematologic toxicity. There was also no adverse impact on liver and kidney function, as 
indicated by normal values of related functional markers including alanine aminotrans-
ferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), serum albumin 
(ALB), blood urea nitrogen (BUN), serum creatinine (CREA) (Fig. 7H–M). Considering 
the prolonged lifespan and stable body weight of the glioma-bearing mice administered 
with this nanoformulation (Fig. 6B, C), these results preliminarily confirmed that SLC-
AN/SN@AQ NPs had no appreciable biotoxicity and thus could be used as a promising 
radiosensitive nanoformulation for future clinical application in brain glioma treatment.

Conclusions
In summary, a low-dose pleiotropic radiosensitive nanoformulation was successfully 
constructed to realize the three-pronged hypoxic radiosensitization to maximize the 
inhibition of GBM. This nanoformulation could efficiently cross the BBB and be pref-
erentially delivered to brain gliomas via ANG-mediated transcytosis. Both in vitro and 
in vivo results demonstrated that this nanoformulation exerted a synergistic therapeu-
tic effect under low-dose radiation by combining high-Z-atom-dependent dose deposi-
tion enhancement, NO-mediated hypoxia relief, and AQ4N-induced hypoxia-activated 
chemotherapy to comprehensively overcome hypoxia-mediated radioresistance while 
extending lifespan and maintaining stable body weight in the glioma-bearing mice. More 
importantly, the proposed in  vivo 9.4  T BOLD/DWI could realize real-time dynamic 
assessment of local oxygen supply and radiosensitivity of brain gliomas, providing suf-
ficient in  vivo biological information for efficacy assessment and precise prognosis of 
GBM. Given the potential inhibition of tumor metastasis and invasion as well as good 
biocompatibility, this hypoxia-specific low-dose nanoradiosensitizer is expected as a 
promising candidate for comprehensive treatment, noninvasive monitoring, and pre-
cise prognosis in GBM and other malignant tumors. In the future, bona fide in vitro and 
in  vivo models such as three-dimensional glioma cell models, patient-derived glioma 
cell culture, and tissue transplantation animal models are expected to provide further 
insights into the therapeutic effects of this low-dose pleiotropic radiosensitive nanofor-
mulation, which will help to overcome the therapeutic differences caused by the hetero-
geneity of brain gliomas and optimize individualized therapy of GBM.
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