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Abstract 

Background: Hepatocellular carcinoma (HCC) is the leading cause of death world-
wide. Nanoparticles allow early detection of tumor and delivery of chemotherapeutic 
drugs to the specific tumor site. This study aimed to assess the therapeutic role of 
dumbbell-like nanoparticles conjugated with monoclonal antibodies (mAbs) against 
both vascular endothelial growth factor (VEGF) and cluster of differentiation (CD) 90 (a 
cancer stem cell marker) in hepatocellular carcinoma experimental model. This study 
included 100 mice; HCC was induced chemically in 80 male Balb/c mice by diethyl-
nitrosamine (DEN) and 20 mice served as normal control group. Mice were divided 
into four groups; pathological control group, mAbs-conjugated nanoparticles-treated 
group, nanoparticles (alone)-treated group and Avastin-treated group. Animals were 
sacrificed after one and two months of treatment for assessment of HCC response 
to treatment. Serum samples were collected and analyzed for alfa-feto protein (AFP), 
Caspase-3, VEGF-A by enzyme-linked immunosorbent assay (ELISA) technique and 
alanine transaminase (ALT) and aspartate transaminase (AST) by automated analyzer. 
Liver sections of sacrificed animals were stained with hematoxylin and eosin (H&E) for 
histopathological assessment.

Results: There were highly significant and significant differences (p value < 0.1 and 
< 0.5) between mAbs-conjugated nanoparticles-treated group and Avastin group, 
respectively, in comparison to pathological group. Both groups showed a significant 
decrease in all serum parameters, but mAbs-conjugated nanoparticles-treated group 
had more potent improvement effect when compared with Avastin group. MAbs-
conjugated nanoparticles-treated group also showed the best improvement in liver 
architecture.

Conclusion: Dumbbell-like nanoparticles conjugated to anti-CD90 and Avastin is a 
novel therapeutic tool for HCC to target cancer stem cells and endothelial cells in the 
niche of the tumor.
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Background
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in 
adults, and is the most common cause of death in people with cirrhosis (Tapper and 

Parikh 2018). It represents up 75–85% of all primary liver cancers (Bray et al. 2018) and 
develops on a background of chronic liver disease, with hepatitis B virus (HBV) infec-
tion, hepatitis C virus (HCV) infection, alcohol abuse and nonalcoholic fatty liver disease 
being the major etiologies (Craig et al. 2019). Its diagnosis is usually late, and the survival 
rate is approximately 6 to 20 months (El-Serag 2011; Manghisi et al. 1998). Although the 
gold standard line of treatment is surgery, not all patients are eligible because of tumor 
stage or liver dysfunction. No new treatments for HCC have been approved. The lack of 
a curative pharmacological therapies for HCC, clarifies the utmost need for novel meth-
ods for better prognosis of HCC Scheme 1. 

Cancer stem cells (CSCs) are a group of dividing cells with highly tumorigenic activity 
and remarkable resistance to conventional lines of treatment (Alkatout et al. 2008; Liu 
et al. 2006). CD90 is an important prognostic marker and effective therapeutic target for 
the treatment of hepatic cancers. This marker is used to identify potential hepatic CSCs 
from tumor specimens and blood samples of liver cancer patients (Hong et al. 2015).

It is well known that tumor cells secrete various growth factors, including vascular 
endothelial growth factor (VEGF), which triggers endothelial cells to form new capil-
laries and enhances the angiogenesis process. Bevacizumab (Avastin), is a recombinant 
humanized immunoglobulin G (IgG) monoclonal antibody that targets VEGF-A inhibit-
ing the formation of the VEGF-A—vascular endothelial growth factor receptor-1 and 2 
(VEGFR-1&2) complex; thus, restricting the tumor mass and reducing the possibility of 
metastases (Braghiroli et al. 2012).

Nanotherapeutics usage in drug delivery applications has recently increased because 
of their desirable therapeutic characteristics, such as prolonged systemic circulation 
and targeted drug delivery. These characters are particularly advantageous for cancer 
therapeutics because they would result in improved anticancer drugs efficacy and would 

Scheme 1 A scheme of the experimental design
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minimize the systemic toxicity (d’Angelo et al. 2010; Eskens and Verweij 2006; Heddles-
ton et al. 2010).

Nanoparticles (NPs) conjugated to monoclonal antibodies and their fragments have 
remarkable impacts on personalized medicine. These particles provide specific internali-
zation and accumulation in the tumor microenvironment (Kadkhoda et al. 2021).

Dumbbell-like nanoparticles (DBNPs) are referred to those particles with two different 
functional NPs in intimate contact that offers a controlled multifunctionality structure 
which allows conjugation with more than one therapeutic agent (Akbarzadeh et al. 2012; 
Gu et al. 2005).

In this study, we have designed DBNPs (iron and gold nanoparticles) where iron was 
tagged with VEGF monoclonal antibodies (mAbs) while gold was tagged with mAb 
against cancer stem cell marker (CD90). Both iron and gold are stable and nontoxic. 
Application of this novel mAbs-conjugated nanosystem showed interesting results 
revealing its promising application as an effective anticancer therapeutic drug delivery 
system.

Results
Synthesis and characterization of dumbbell‑like Au‑Fe3O4 nanoparticles

The size and morphology of gold (8  nm) and dumbbell-like Au-Fe3O4 nanoparticles 
(8–20-nm) (core−particle diameter) were checked by transmission electron micros-
copy (TEM). Avastin was linked to the  Fe3O4 surface through polyethylene glycol (PEG, 
Mr = 3000), while CD90 was noncovalent conjugated to Au moiety of the dumbbell 
nanosystem (Fig. 1).

In vitro drug release

Drug release behavior of Avastin−Au-Fe3O4nanosystem was tested at two different pH 
values: pH 7.4, which mimics the pH of the blood stream and pH 5, which mimics the 
pH of the endosomes within cancer cells. In vitro release study results (Fig. 2) showed 
that Avastin−Au-Fe3O4 released more than 95% of Avastin at pH 5 over the period of 
10 h. On the other hand, it required more than 16 h to reach the same percentage of 
release at pH 7.4.

Histopathological examination of liver specimens

Mice treated with dumbbell-like Au-Fe3O4 nanoparticles conjugated to bevacizumab 
(Avastin) and anti-CD90 monoclonal antibodies showed the best improvement of liver 
architecture and regression of tumor after one month of treatment when compared 
with Avastin and nano-treated groups, respectively. Avastin-treated group showed 
mild improvement in liver architecture after one month of treatment while a marked 
improvement was noticed after two months. The treatment with nonconjugated dumb 
bell-like Au-Fe3O4 nanoparticles showed the mildest improvement in liver architecture 
after two months when compared with mAbs-conjugated nanoparticles and Avastin-
treated groups (Figs. 3, 4).
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Fig. 1 Dumbbell-like Au-Fe3O4 nanoparticles. a Illustration of surface functionalization of the Au-Fe3O4 
dumbbell- like nanoparticles. b, c TEM images of Au-Fe3O4 (8–20-nm) particles before b and after c surface 
modification
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Fig. 2 In vitro release of Avastin from Avastin−Au-Fe3O4 nanosystem in PBS pH 7.4 and in Tris−HCl buffer pH 
5
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Fig. 3 Histopathological analysis of liver specimens of different groups after one month of treatment. A 
Pathological control group: showed marked disturbed liver architecture and marked polymorphism (H&E 
X10) B mAbs-conjugated nanoparticles-treated group: showed restoration of normal liver architecture, 
marked inflammatory infiltrate, mild polymorphism (H&E, 20X). C Avastin-treated group: showed moderate 
disturbed of liver architecture, moderate inflammatory infiltrate, mild increase mitosis, mild increase nuclear 
size and moderate polymorphism (H&E, 20X). D Nonconjugated nanoparticles-treated group: marked 
nodular and disturbed architecture, moderate inflammatory infiltrate, moderate increase mitosis, moderate 
increase nuclear size, bizarre shape of cells and marked polymorphism (H&E, 20X)

Fig. 4 Histopathological analysis of liver specimens of different groups after two months of treatment. A 
Pathological control group: showed marked disturbed liver architecture and marked polymorphism (H&E, 
X40) B mAbs-conjugated nanoparticles-treated group: showed preserved liver architecture, increased 
inflammatory reaction, mild polymorphism (anaplasia) (H&E, 20X). C Avastin-treated group: showed mild 
restoration of liver architecture, no inflammatory cells, clear cytoplasm and mild polymorphism (H&E, 20X). 
D Nonconjugated nanoparticles-treated group: showed moderate disturbed of liver architecture, decrease 
inflammation, moderate polymorphism (H&E, 20X)
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Biochemical analysis

MAbs-conjugated nanoparticles-treated group showed significant and highly sig-
nificant improvement in the 2 months of treatment, where remarkable decrease in 
AFP, ALT, AST, and VEGF-A was detected when compared with pathological con-
trol after first (p value < 0.5) and second month (p value < 0.1), respectively. More-
over, mAbs-conjugated nanoparticles-treated group showed highly significant 
increase in caspases-3 when compared with pathological control after first month 
(p value < 0.1), while it showed significant decrease after second month treatment 
when compared with the pathological control (p value < 0.5). Avastin-treated group 
showed significant decrease in all parameters as well but showed significant increase 
in caspases-3 when compared with pathological control after first and second month 
(p value < 0.5).

The data of each parameter are illustrated in Tables 1 and 2.

Table 1 Mean significance ± SE values of serum levels of AFP, caspases-3, VEGF-A, ALT and AST 
levels in sera of different groups after first month of treatment

a Significant and bhigh significant increase between pathological # normal groups (P < 0.5 and P < 0.1, respectively)
c Significant and dhighly significant difference between nanoparticles conjugated # pathological control groups (P < 0.5 and 
P < 0.1, respectively)
e Significant and fhighly significant difference between Avastin and pathological control groups (P < 0.5& P < 0.1, 
respectively)
g Significant in the mean values of different markers between first and second months

Animal groups (first 
month)

AFP ng/ml ALT IU/ml AST IU/ml Caspases ‑3 ng/ml VEGF‑A pg/ml

Normal control 11.06 ± 0.12 99.04 ± 0.79 49.89 ± 2.44 3.37 ± 0.10 125 ± 0.19

Pathological control 55.14 ± 0.16b 306.8 ± 4.147b 131.1 ± 2.8a 4.94 ± 0.06a 249.9 ± 0.18b

mAbs-conjugated nano-
particles

22.09 ± 0.12c 130.6 ± 0.53d 61.17 ± 2.31c 32.11 ± 0.09d 140 ± 0.12c

Avastin 37.67 ± 0.21e 201.3 ± 0.51e 86.07 ± 1.49e 20.63 ± 0.23e 179.9 ± 0.15e

Nanoparticles 51.09 ± 0.15 279.6 ± 0.95 121.1 ± 1.93 5.45 ± 0.11 220.2 ± 0.14

Table 2 Mean significance ± SE values of serum levels of AFP, caspases-3, VEGF-A, ALT and AST 
levels in sera of different groups after second month of treatment

a Significant and bhigh significant increase between pathological # normal groups (P < 0.5 and P < 0.1, respectively)
c Significant and dhighly significant difference between nanoparticles conjugated # pathological control groups (P < 0.5& 
P < 0.1, respectively)
e Significant and fhighly significant difference between Avastin and pathological control groups (P < 0.5 and P < 0.1, 
respectively)
g Significant in the mean values of different markers between first and second months

Animal groups (second 
month)

AFP ng/ml ALT IU/ml AST IU/ml Caspases‑3 ng/ml VEGF‑A pg/ml

Normal control 11.06 ± 0.12 99.04 ± 0.79 49.89 ± 2.44 3.37 ± 0.10 125 ± 0.19

Pathological control 68.08 ± 0.14b 346.6 ± 2.23b 161.1 ± 5.24b 6.14 ± 0.09b 280.7 ± 0.36b

mAbs conjugated nano-
particles

13.15 ± 0.11dg 101.7 ± 2.41dg 44.9 ± 1.75dg 4.28 ± 0.19eg 125.5 ± 0.25dg

Avastin 25.10 ± 0.09f 158.2 ± 2.89ea 61.7 ± 1.88e 12.21 ± 0.15e 159.9 ± 0.12e

Nanoparticles 49.47 ± 0.19 270 ± 0.11 137.6 ± 2.50 7.42 ± 0.11 200.2 ± 0.12



Page 7 of 12Mansour et al. Cancer Nanotechnology           (2023) 14:14  

Discussion
Different studies discussed and exhibited the promising role of dumbbell-like Au-
Fe3O4 NPs as highly sensitive diagnostic and therapeutic nano-carriers (N. Yu et al. 
2005). In this study, dumbbell-like Au − -Fe3O4 nanoparticles were synthesized and 
conjugated with monoclonal antibodies against VEGF-A (Avastin) and CD90 to tar-
get cancer stem cells of liver cancer. NPs size, surface functionalization and conjuga-
tion with monoclonal antibodies were checked and confirmed by TEM. Drug release 
is currently assessed using a variety of methods including sample and separate (SS), 
dialysis membrane (DM), continuous flow (CF), as well as voltametry and turbidim-
etry (D’Souza 2014). In our study, we used the dialysis membrane method. The in 
vitro drug release results confirmed that Avastin−Au-Fe3O4 exhibited faster release 
in pH5, which mimics the pH of endosomes within cancer cells, when compared with 
their release in pH 7.4. The pH-sensitivity property of Avastin−Au-Fe3O4 complex 
seems to be advantageous for cancer-targeted drug delivery because the acidic micro-
environment of cancer cells facilitates active drug release from NPs, increases drug 
bioavailability to cancer cells, and leads to high therapeutic efficacy when compared 
with normal cells (Xu et al. 2008; Qi et al. 2010).

Our results showed that mAbs-conjugated nanoparticles-treated group had the 
best histopathological improvement where manifestations of anaplasia and metapla-
sia observed in pathological control were greatly reduced with restoration of normal 
liver architecture. Avastin-treated group showed mild disturbed liver architecture 
and moderate polymorphism when compared with pathological control. On the 
other hand, nonconjugated nanoparticles-treated group showed the least improve-
ment when compared with pathological control with moderate nodular and disturbed 
architecture and marked polymorphism. These results are in agreement with several 
studies that discussed the improvement and antiangiogenic effect of metallic nano-
particles on induced HCC models (Baiga et al. 2019; Elaidy et al. 2017).

Our results also revealed that mAbs-conjugated dumbbell-like  Fe3O4 nanoparticles-
treated group showed a highly significant decrease in AFP, VEGF-A, ALT and AST 
levels in comparison with other groups. This significant decline indicates a promising 
and useful application of this therapeutic nanosystem to predict treatment response 
and survival in HCC patients.

Moreover, several studies confirmed the significant role of nanoparticles employ-
ment and induction of apoptosis in different cancer types (Baharara et  al. 2016; 
Han et  al. 2019; Nabin et  al. 2021). In our study, caspase-3 level showed significant 
increase after one month of treatment with all of, mAbs-conjugated dumbbell-like 
 Fe3O4 nanoparticles, Avastin group, or nanoparticles-treated group comparing to 
normal control. After two months of treatment, the level slightly decreased, but still 
higher than normal control indicting that apoptosis was marked in the 1st month of 
treatment and its rate started to decline in the 2nd month with more improvement in 
liver architecture and apoptotic reduction. MAbs-conjugated nanoparticles-treated 
group showed the most significant improvement results of caspases when compared 
with other groups in both first and second months of treatment and this revealed its 
significant improving effect.
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Conclusion and recommendations
Dumbell-like nanoparticles conjugated with monoclonal antibodies against both VEGF 
and cancer stem cell has a targeting effect against hepatocellular carcinoma with the 
maximum effect at tumor sites not normal tissues as proved by histopathological assess-
ment. Moreover, liver function assays improved significantly with treatment with Dum-
bell-like nanoparticles conjugated with monoclonal antibodies against both VEGF and 
cancer stem cell. Although, further studies, including more mice and more investigation, 
are required, our results could pave the way for a new targeted therapy approach for 
HCC.

Methods
Reagents and apparatus

Hydrogen tetrachloroaurate (III) hydrate (HAuCl4·3H2O), tetralin, oleylamine 
tert−butylamine−borane complex (TBAB), acetone, iron pentacarbonyl Fe(CO)5, 
oleic acid, octadecene, oleylamine, iso-propanol, polyethylene glycol (PEG) diacid, 
N-Hydroxysuccinimide(NHS), N,N′-dicyclohexylcarbodiimide(DCC), dopamine hydro-
chloride, chloroform(CHCL3), anhydrous  Na2CO3, hexane, phosphate buffer saline 
(PBS), hydrogen chloride (HCL), diethylnitrosamine (DEN), and other organic solvents 
were purchased from Sigma Aldrich (Germany). 1-ethyl-3-(3-dimethyl aminopropyl) 
carbodiimidewas purchased from Pierce Biotechnology. Dialysis bag (MWCO 10000) 
was from Fisher while other dialysis bag (MW12,000–14,000  g/mol) was from Serva, 
Germany. Avastin (bevacizumab) 400 mg/16 ml (Roche, Germany), CD90 monoclonal 
antibodies was purchased from Miltenyibiotec (130-097-932), sodium chloride 0.9% 
intravenous infusion (FIPCO), AFP (CanAg EIA kit), caspase-3 (SinogeneclonCo., LTD), 
VEGF-A (Invitrogen, Thermo fisher Scientific).

Transmitting electron microscopy (JEOLI, JEM-2100), ELISA reader (Biotek), spec-
troscopy (Cintra), magnetic stirrer and heater (Lab-line instrument), digital balance (Ae-
ADAM), centrifuge 5702 R (Eppendorf ), pH meter (AD 8000).

I‑Preparation of dumbbell‑like Au‑Fe3O4 nanoparticles:

1- Preparation of Gold nanoparticles

 Gold nanoparticles were purchased from Nanotech Egypt Company for Photo-elec-
tronics Dream Land. They were prepared according to Elaidy et  al. (2017). Briefly, 
0.1  g of hydrogen tetrachloroaurate (III) hydrate (HAuCl4·3H2O) was mixed with 
tetralin (10 mL), oleylamine (10 mL) then magnetically stirred for 10 min at 10  °C 
under  N2 flow. A reducing solution of tert−butylamine−borane complex (TBAB), 
tetralin (1 mL), was mixed then added to the solution. 1 h later at 10  °C, 60 ml of 
acetone was added to precipitate the Au NPs which collected by centrifugation 
(8500 rpm for 8 min) then washed and re-dispersed in hexane. The size of the Au 
particles was tuned by controlling the reaction temperature at 10  °C. The required 
(8 nm) diameter of Au was checked with transmission electron microscope.
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2- Synthesis of dumbbell‑like Au‑Fe3O4 nanoparticles
 The dumbbell-like Au-Fe3O4 nanoparticles were prepared according to Peng et  al. 

(2008) by decomposition of iron pentacarbonyl Fe (CO)5 on the surface of Au nano-
particles followed by oxidation under air. Briefly, 1ml oleic acid and 20 ml octadecene 
was heated at 120 °C for 20 min in presence of  N2 flow. Then, 0.15 ml Fe (CO)5 and 
0.5 ml of oleylamine were added to the solution. 2 ml of previously prepared 8 nm 
Au colloidal were added and the solution was heated for 45 min (310  °C). Follow-
ing cooling at room temperature, the particles were separated by addition of iso-pro-
panol, centrifuged and dispersed into hexan. The diameter of Au-Fe3O4 was checked 
with transmission electron microscope.

II‑Conjugation of dumbbell‑like Au‑Fe3O4 nanoparticles with monoclonal antibodies:

1- Surface modification of Au‑Fe3O4 particles:

 20 mg of PEG diacid, 2  mg of N-Hydroxysuccinimide (NHS), 3 mg of N,N′-
dicyclohexylcarbodiimide (DCC) and 1.7 mg of dopamine hydrochloride were dis-
solved in a mixture solution of  CHCl3 (2 mL) and anhydrous  Na2CO3 (10 mg). The 
solution was stirred at room temperature for 2  h before adding 5  mg of nanopar-
ticles, and the resulting solution was stirred overnight at room temperature under 
 N2. The modified nanoparticles were precipitated by adding 5 ml of hexane and col-
lected by a permanent magnet and dried under  N2 then dispersed in PBS. The extra 
surfactants and other salts were removed by dialysis using a dialysis bag (MWCO 
10000) for 24 h in PBS.

2- Conjugation of Avastin to modified Au‑Fe3O4 naoparticles:
 A solution of nanoparticles previously dispersed in PBS was mixed with 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide for 15 min. After the addition of Avastin (1mg/
ml), the solution was stirred for 1 h and the conjugate was purified by the magnetic 
separator three times at 4 °C.

3- Conjugation with CD90 monoclonal antibody:
 Noncovalent conjugation of Au nanoparticles part of the dumbbell Au-Fe3O4 nano-

system with CD90 monoclonal antibodies was accomplished by the addition of 
170 µg of CD90 to the previously prepared conjugated mixture and kept on sterrier 
for 30 min.

Images were taken by transmission electron microscopy (JEOLI, JEM-2100) for 
the synthesized Au-Fe3O4 nanosystem before and after conjugation with monoclonal 
antibodies.

In vitro drug release

One ml of Avastin−Au-Fe3O4 was dispersed in de-ionized water then transferred into dialy-
sis bag (cut off molecular weight 12,000–14,000 g/mol, Serva, Germany) with surrounding 
releasing medium of 50 mL PBS buffer (pH 7.4) and another one ml was dispersed into Tris–
HCl buffer (pH 5) dialysis bag at 37 °C. At fixed time intervals, 1 mL of release medium was 
withdrawn from each dialysis bag release medium then replaced with fresh buffer to maintain 
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the sink conditions. The amount of released Avastin was determined by UV–Vis spectroscopy 
at 480 nm. Cumulative drug release percentage was calculated as follows.

Experimental model

One hundred male Balb/c mice weighing ~ 20 ± 5 gm were enrolled in this study. Ani-
mals were raised and maintained at the animal house in TBRI in barrier units with a 
defined and regularly monitored health status. They were kept under constant tempera-
ture and humidity. Mice were fed on a standard diet. The Ethical Committee of experi-
mental animals at TBRI approved the protocols. All guidelines for the care and use of 
animals were followed, according to IRH of TBRI.

III‑Experimental model groups

Mice were divided into five groups:

1- Normal control group: 20 mice were injected I.P. with 100  µl saline weekly for 
8 weeks.

2- Pathological control group: 20 mice were injected I.P. with 200 mg/kg body weight 
diethylnitrosamine (DEN) diluted in saline once per week for eight consecutive 
weeks.

3- MAbs-conjugated nanoparticles-treated group: 20 mice were injected I.P. with 
200  mg/kg body weight diethylnitrosamine (DEN) diluted in saline once per week 
for eight consecutive weeks then treated with I.V. injection of 100 µl dumbbell nano-
particles conjugated to mAb against both VEGF (Avastin) (400 mg /16 ml) and CD90 
(300 µl) every two weeks for 8 weeks.

4- Nonconjugated nanoparticles-treated group: 20 mice were injected I.P. with 200 mg/
kg body weight diethylnitrosamine (DEN) diluted in saline once per week for eight 
consecutive weeks then injected I.V. with 100  µl of dumbbell nanoparticles alone 
every two weeks for 8 weeks.

5- Avastin-treated group: 20 mice were injected I.P. with 200 mg/kg body weight dieth-
ylnitrosamine (DEN) diluted in saline once per week for eight consecutive weeks 
then treated with I.V. injection with 100 µl Avastin every two weeks for 8 weeks.

One animal from each group were scarified after 4 weeks for follow up. After another 
4 weeks, residual animals of all groups were sacrificed and sera were analyzed by ELISA 
technique for AFP, caspases-3, VEGF-A and ALT and AST. Liver sections from sacri-
ficed animals were histopathologically assessed.

IV‑Histopathological examination of hepatic specimens

Hepatic specimens were processed and stained with Hematoxylin and Eosin (H & E) for 
histopathological assessment.

Cumulative drug release =
(Amount of Avastin in the releasemedium)

(Initial amount of Avastin loaded ontoNPs)
× 100
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V‑ Biochemical analysis of collected serum samples:

Commercially available ELISA kits were used to detect HCC markers (AFP), apoptotic 
markers (caspase-3), and angiogenesis marker (VEGF-A).

Statistical analysis of data

All data are expressed as means and standard deviations. Analysis of variance (ANOVA) 
and one-way ANOVA were used to analyze within group data and between-group data, 
respectively. Values of P ≤ 0.05 will be considered statistically significant.
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