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Abstract 

Background: Developing high‑performance sensing frameworks for diagnosing 
anaplastic changes is the subject of debate. The lack of on‑time diagnosis in patients 
with suspicious cancers can affect the prognosis and survival rate. As a correlate, the 
emergence of de novo strategies for developing transducing frameworks has an inevi‑
table role in advanced biosensing. The combination of green chemistry procedures 
with eco‑friendly and biocompatible materials is of high desirability in this context. The 
synthesis of new biocompatible and cost‑effective nanomaterials to meet the emerg‑
ing needs of rising demands appeals to new synthetic methodologies.

Methods: Here, we applied the electrochemical synthesis method to the fabrication 
of biocompatible and subtly governed Molybdenum trioxide/poly taurine nano‑bio 
films to monitor human epidermal growth factor receptor‑2 (HER‑2) in sera from breast 
cancer patients. Morphological and elemental assessments were performed using a 
scanning electron microscope, energy‑dispersive X‑Ray spectroscopy, and dot map‑
ping analyses. In addition, HER‑2 immunohistochemistry (IHC) staining was performed 
on tissue samples, and data were compared to the values obtained by Molybdenum 
trioxide/poly taurine nano‑bio films.

Results: We also noted our platform is eligible for feasible, rapid, and specific deter‑
mination of HER‑2 factor in human samples. The method had a lower limit of quan‑
tification of 0.000001 ng/mL and a linear dynamic range between 0.1 ng/mL and 
0.000001 ng/mL. IHC imaging showed that the degree of anaplastic changes in breast 
samples (intensity of HER‑2 factor) was closely associated with the intensity of signals 
obtained by our developed immunosensor.

Conclusions: According to the obtained desirable coordination with pathological 
studies, the designed biosensor has excellent capability to use as a reliable diagnostic 
tool in clinical laboratories.
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Graphical Abstract

Introduction
Breast cancer (BC) is one of the most devastating malignancies and the second-leading 
mortality cause in females worldwide. Traditional methods for BC screening include 
magnetic resonance imaging (MRI), ultrasound, mammography, or positron emission 
tomography (PET scans). Unfortunately, these approaches possess several drawbacks, 
such as high cost, low sensitivity, invasiveness, and difficult operation with stressful con-
ditions for patients (Kim et al. 2020; Loyez et al. 2020). Several BC biomarkers, such as 
nucleotides, cancer cells, proteins, and some small molecules, have been explored to 
support a more precise and convenient diagnosis than conventional methods. Of these 
biomarkers, the human epidermal growth factor receptor-2 (HER-2), a specific onco-
protein, is changed during the development and progression of BC (Nasrollahpour 
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et al. 2021a). It was suggested that the overexpression of HER-2 in breast cancer cells 
stimulates proliferation rate and tumor expansion (Chen et al. 2019; Sharma et al. 2018). 
Currently, the biomarker assisted diagnosis of HER-2+ BC is based on conventional 
techniques like cytological analyses using fine-needle aspiration (FNA), fluorescence 
in situ hybridization (FISH), gene expression monitoring, immunohistochemistry (IHC), 
and enzyme-linked immunosorbent assay (ELISA) procedures. Among the above-
mentioned approaches, FNA and direct sampling are time-consuming and operation-
ally invasive and can result in iatrogenic tumor implantation or metastasis (Tabasi et al. 
2017). Importantly, laboratory data have indicated that the level of HER-2 in the serum 
of BC patients ranged from 220 pM to 1.1 nM whereas these values reached 30 pM to 
220 pM in healthy people, showing the much overlaps in the systemic levels of HER-2 
under physiological and pathological conditions (Ranganathan et  al. 2020; Chun et  al. 
2013; Shen et al. 2018). Consequently, there is an urgent need to develop more accurate 
and low-cost methodologies with the ability for rapid and sensitive recognition in BC 
patients.

Biosensors have been developed as key responses to circumvent the problems asso-
ciated with HER-2 screening (Karimzadeh et  al. 2020; Pourakbari et  al. 2019). Elec-
trochemical biosensors are one of the most employed, highly sensitive, and easily 
implemented tools for detecting target molecules in biological samples (Cesewski and 
Johnson 2020; Wang et al. 2017; Min et al. 2021; Khalilzadeh et al. 2019; Mansouri et al. 
2020). One of the most appealing interests in electrochemical biosensing strategies is 
using nano-biomaterials to modify electrode surface structure (Chenaghlou et al. 2021; 
Isildak et  al. 2020). The simultaneous application of nanomaterials in electrochemical 
sensors can yield excellent achievements (Zhang and Chen 2019; Wongkaew et al. 2018; 
Gupta et  al. 2021). The synthesis protocol of nanomaterials is one of the limiting fac-
tors in their applicability, quality, final costs, and environmental viewpoints (Chen et al. 
2018; Kolahalam et al. 2019). Thanksgiving to colloidal procedures, electrosynthesis of 
nanomaterials is easily performed by dipping the working electrode in the electrochemi-
cal cell containing the precursor solution. A load of the same nanostructures on work-
ing electrodes using electrochemical methods is thought to increase detection outcomes 
(Wang et al. 2020; Ansari et al. 2020; Zhang et al. 2020; Nasrollahpour et al. 2021b). In 
this case, there are no reducing or stabilizing agents in the growth solution, which were 
applied in colloidal methodologies. Instead, a specified potential or current is imple-
mented across the reaction cell to form nanoparticles. Integrating the electrosynthesis 
methods with the fast-growing nanotechnology field can present a unique gift to pro-
gress the synthesis chemistry for many applications (Mozafari and Parsa 2020; Ulyankina 
et al. 2020; Fani et al. 2020; Ma et al. 2021).

Molybdenum trioxide  (MoO3) semiconductor is highly interesting among other 
semiconductors because of desirable biocompatibility, high electrical conductivity, big 
band gape, acceptable catalytic activity, tuning plasmon, large surface area, and lower 
final production costs (Zhu et al. 2017; Huang et al. 2018). These superiorities facilitate 
the application of  MoO3 in several domains, such as electro-catalysis (Yang et al. 2020; 
Afsharpour and Dini 2019), energy storage device development (Wu et al. 2017; Dwivedi 
et al. 2018), and fabrication of chemical sensors (Wei et al. 2020; Samdani et al. 2017; 
Xue et al. 2019; Pandey et al. 2018). To this end,  MoO3 nanomaterials have been used 
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in different shapes, sizes, and functionalities in biosensing strategies. One of the most 
prevalent interests in such an investigation is merging Mo nanostructures with other 
nanomaterials like platinum (Wang et al. 2016), graphene (Achadu et al. 2020), and gold 
(Wei et al. 2020) nanomaterials. All these combinations are proposed to boost the per-
formance of the Mo nanostructures and cover their application gaps like poor function-
ality and lower conductivity compared to the noble metal nanomaterials.

In this research, we used  MoO3/poly-Tau  (MoO3/p-Tau) nanofilms as a high-perfor-
mance framework for the detection of HER-2 in serum samples of BC patients. P-Tau 
is a conductive biopolymer that can raise the sensitivity of the biosensing framework by 
increasing the conductivity, enhancing the specific surface area, and effectively binding 
the other (nano)materials onto the electrode. In addition, taurine is considered a func-
tional group-rich compound for nitrogen and sulfur containing groups in the structure. 
Considering its high biocompatibility and desirable features, combining p-Tau with 
other (nano)materials can be a promising tool for designing high-performance biosen-
sors. This research applied an electrosynthesis route to fabricate the nanofilms onto 
the electrode for breast cancer screening. To our knowledge, this is the first report of 
 MoO3/p-Tau nano-films application in the bioassaying field. The highly homogeneous 
distribution of Mo nanoparticles into the p-Tau films was monitored using an appropri-
ate potential range.

Experimental
Material and instruments

HER-2 antibody (Ab) and HER-2 protein were obtained from Abcam.  Na2MoO4 powder 
and taurine were purchased from Merck. N-ethyl-N′-(3-(dimethylamino) propyl) car-
bodiimide (EDC) and N-hydroxysuccinimide (NHS) solutions were prepared in deion-
ized water (Sigma-Aldrich). Phosphate buffer solution (PBS, pH = 7.4) was prepared 
by dissolving 200 mg KCl, 1.44 g  Na2HPO4, 8 g NaCl, 245 mg  KH2PO4, in the deion-
ized water at room temperature. Electrochemical measurements were done by using 
a Metrohm Autolab system and Nova software. The electrochemical system was com-
posed of a three-electrode system, including a glassy carbon electrode (GCE) as a work-
ing electrode with 3 mm in diameter, a Pt wire as the counter electrode, and an Ag/AgCl 
as the reference electrode. All analyses were performed at room temperature. Before 
experiments, an ultrasonic bath (Model: 420; Transsonic) was applied to homogenize 
the solutions. The pH of solutions was controlled via a pH meter (Corning, model 120). 
Solutions were mixed using a magnetic stirrer,. The SEM, EDX, and dot mapping records 
were recorded using a Tescan instrument (Model: MIRA3).

Fabrication of the electrochemical immunosensor

Immunosensor was manufactured on a pre-cleaned 3 mm diameter GCE as the work-
ing electrode. The electrosynthesis process was performed in a three-electrode system 
through the cyclic voltammetry technique. All the potentials were applied versus Ag/
AgCl electrode. At pH = 7, the electrodeposition was switched by dipping the work-
ing electrode inside the electrochemical cell containing an aqueous solution of 5  mM 
 Na2MoO4 and 0.1  M taurine. Afterward, cyclic voltammetry was carried out in the 
range of − 1.5 to 2.3 V with a scan rate of 0.05 V per second for 5 cycles. The modified 
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electrode was tagged as  MoO3/p-Tau/GCE. In the following, the modified electrodes 
were rinsed in deionized water. Then, a mixture of EDC/NHS/Ab (2:1:1 v/v) was pre-
pared and after a homogenizing process, left to rest for 30  min. Antibody molecules 
attached to the surface via amid bound between carboxylic groups of the antibody and 
nitrogen groups of the poly taurine moiety of the electrodeposited film. Next, a 10 µL 
of the mixture was drop cast on the  MoO3/p-Tau/GCE and left for 90  min. Finally, a 
determined amount of HER-2 protein was incubated on the Ab-EDC-NHS/MoO3-p-
Tau/GCE for 90 min. The prepared electrode was washed with PBS solution (pH = 7.4) 
and analyzed with an AutoLab instrument. For comparison, other electrodes, including 
p-Tau/GCE and  MoO3/GCE, were fabricated using a similar approach.

HER‑2 IHC staining

In this study, we performed HER-2 IHC staining to find the correlation of anaplastic 
changes in breast tissue with HER-2 levels in the serum of BC patients. For this purpose, 
patients were asked to complete the informed consent. All procedures of this study were 
approved by the Local Ethics Committee of Tabriz University of Medical Sciences. In BC 
patients, histopathological examination is touted as the gold standard for consolidated 
diagnosis and determination of BC anaplastic changes. The tissue fragments sampled 
during the surgical procedure and referred to the pathological lab were used in this study 
without any interference with the treatment protocol of patients. Here, we monitored 
the HRE-2 levels in BC samples. For IHC staining, samples were fixed in 10% forma-
lin solution, 5 µm thick slides were prepared. Samples were incubated with 3% hydro-
gen peroxide solution for 20–30 min to neutralize endogenous peroxidase activity. To 
retrieve antigens, slides were kept in citrate buffer (pH = 6.0) for 15 min. Thereafter, an 
antibody targeting human HER-2 was used according to the manufacturer’s instructions. 
After PBS washes, a secondary HRP-conjugated antibody was used. Diaminobenzidine 
(DAB) was used as a chromogen agent. Finally, the slides were visualized and imaged 
using Olympus microscopy.

Results and discussion
Clarification of the electrosynthesis methodology

To evaluate the efficiency of the protocol, the developed electrochemical biosensors 
were monitored using two different approaches. The cyclic voltammetry (CV) tech-
nique was used in the range of −  1.5 to 2.3 V to prepare the  MoO3/p-Tau nanofilms. 
According to the literature, p-Tau was electropolymerizable in positive potentials about 
1.8  V vs. SCE. The electropolymerization of p-Tau was initiated by an oxidation pro-
cess of a taurine molecule on its  NH2 end in positive potentials. The oxidized taurine 
molecule linked to a sulfur atom in another taurine molecule released an  H2O molecule 
to form an N-S bund between the two taurine molecules. Equation 1 depicts the whole 
mechanism of p-Tau formation (Hasanzadeh et al. 2014).  MoO3 was electrodeposited in 
the negative ranges (Yao et al. 2012; Zhao et al. 2020). In this regard, we used a poten-
tial range between −  1.5 and 2.3 V (vs. Ag/AgCl) to cover both negative and positive 
potentials. This feature led to the simultaneous formation of homogenous  MoO3 and 
p-Tau as highly ordered nanofilms. According to our data (Fig. 1A, B), two important 
potential points were notified on the voltammogram following the electrodeposition of 
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p-Tau. The first point correlates with the oxidation of p-Tau and enhanced electropo-
lymerization process at 1.8 V. The peak at -0.55 V would be related to the reduction of 
the positive p-Tau byproducts on the electrode surface. We found that both these peaks 
were also detectable in the CV after co-electrodeposition of  MoO3/p-Tau. Data showed 
three distinct points in the CV voltammograms of  MoO3/p-Tau. First, in both CV vol-
tammograms, there are two pairs of potentials (represented as  a1,  a2, and  c1,  c2). As can 
be seen, the two pairs of potentials related to the  MoO3/p-Tau surface exhibited a sharp 
and reversible response compared to the electrode coated with  MoO3 alone, indicating 
a more rapid electron transferring ability of  MoO3/p-Tau nanofilm versus  MoO3 alone. 
The peak at about − 0.5 V on  MoO3/p-Tau nanofilms’ growth  (c4) can be correlated with 
the reduction of p-Tau species which were produced during the anodic potentials. The 
cathodic peak  (c3) in the  MoO3 voltammogram is associated with the reduction of pro-
duced  O2 during the anodic cycle (Genies et  al. 1998). This peak was not detected in 
 MoO3/p-Tau and p-Tau voltammograms. One reason would be that the reduction of  O2 
by oxidized p-Tau species disappeared from the relevant peak.

Characterization of the co‑electrosynthesized  MoO3/p‑Tau nanofilms

To confirm the electrodeposition and electrocatalytic activity of the electrosynthesized 
nanofilms, electrochemical and morphological characterizations were conducted. The 
CV and electrochemical impedance spectroscopy (EIS) techniques were implemented 
to prove the effectiveness of each component on the electrochemical signal’s inten-
sity. The experiments proceeded in 5 mM  K4[Fe(CN)6] (Additional file 1: Fig. S1A, B). 
Noteworthy, the peak currents were increased after electropolymerization of p-Tau in 
comparison with bare GCE. This can be due to the increased surface area and electro-
conductivity of p-Tau film. According to the CV data, the signal further increased with 

(1)nNH2 − CH2 − CH2 − SO3H
Applyingpotential(CyclicVoltammetry)

→

[NH − CH2−CH2−SO2 − NH−CH2−CH2 − SO2]n
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Fig. 1 Clarification of the electrosynthesis of frameworks (Taurine,  MoO3, and  MoO3/p‑Tau). A The correlated 
CV voltammograms and B The magnified voltammograms between − 1.5 to 1 V. All the represented arrows 
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the co-electrosynthesis of  MoO3/p-Tau. For further confirmation, the voltammograms 
of electrodes coated with Molybdenum alone were studied. Data supported the fact 
that the peak heights of the  MoO3/p-Tau modified electrode were more than that of the 
 MoO3, indicating the higher conductivity of the  MoO3/p-Tau electrode. It is inferred 
that the combination of  MoO3 and p-Tau have a synergic and/ or structural improve-
ment effect of increasing current compared to when used alone. The stepwise prepara-
tions and relevant data are presented in Fig. 2A, B). After incubation of electrodes with 
the EDC/NHS/antibody mixture, the signal intensities declined, which is linked to the 
steric hindrance of the EDC/NHS/antibody combination. EDC/NHS couple was used 
to activate the carboxylic groups of Abs. Using this strategy, the incubation time of Ab 
is decreased dramatically. Along with these changes, a dramatic decrease in the intensity 
of signals was notable after incubating the HER-2 protein. These effects can be related to 
the existence of antigen–antibody interaction and the gained steric repulsion of HER-2 
protein.

In order to confirm the results, morphological and semiquantitative studies were per-
formed using SEM, EDX, and dot mapping analyses (Fig.  3 and Additional file  1: S2). 
SEM imaging revealed that  MoO3 nanoparticles were evenly distributed inside the p-Tau 
matrix with a narrow particle size (about 22 nm) distribution. As can be seen from the 
figures visibly, the surface-to-volume ratio is the best by  MoO3/p-Tau compared to 
the p-Tau and  MoO3 films. The distribution quality was also confirmed by data from 
dot-mapping plots (Additional file 1: Fig. S2), which indicated a high-density electrode 
deposition of the platform o the electrode. Also, to give a clearer vision of the deposi-
tion manner of the nanofilm, we employed elemental analysis results with  MoO3/p-Tau 
modified electrode using EDX. According to the results (Additional file 1: Table S1), the 
weight percent of elements reflect the deposition quality of the proposed platform onto 
the electrode.

Optimization of experimental conditions

Several parameters, such as the number of deposition cycles and incubation time should 
be considered to boost the sensing efficiency. As a correlate, the number of deposition 
cycles was investigated. According to previous data, scan numbers critically impact the 
thickness and quality of the nanofilms. In this way, five different scan numbers, includ-
ing 1, 3, 5, 8, and 10 were performed. The electrochemical readouts were increased 
with increasing cycle number (Additional file  1: Fig. S3A, B). This can be correlated 
to increasing the specific surface area as the nanofilm was grown further from 1 to 5 
cycles. In cycles more than 5 cycles, the response intensity was decreased, resulting from 
much thickness of the nanofilms and/or decreased porosity. The incubation time of the 
antibody on the modified electrode surface was also optimized. Considering the time 
required for biorecognition and the promotion of covalent interaction on the modified 
electrode surface, the reduction of signal intensity is a result of the steric hindrance. By 
increasing the incubation time, the number of antibody molecules attached to the elec-
trode surface is thought to be increased. As shown in Additional file 1: Fig. S4A, B), the 
signal intensity was decreased with an increase in the incubation time from 15 to 90 min. 
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Of note, a higher amount of time (more than 90 min) did not alter the signal readouts, 
which can mean the saturation of the attachment sites by Ab molecules.

Analytical performance characteristics

Quantitative recognition of the target protein was tried out under the optimized con-
ditions by incubating six different concentrations of HER-2 protein (0.1, 0.01, 0.001, 
0.0001, 0.00001, and 0.000001  ng/mL) with the designed transducer. As illustrated in 
Fig.  4A, B), the electrochemical response was orderly decreased upon the increased 
HER-2 concentration. The data represents a good linear correlation between the sig-
nal intensity and related concentrations (r2 = 99.78). We found a lower limit of quan-
tification (LLOQ) at the range of 1  fg/mL. These data demonstrated the suitability of 
the developed immunosensor for the analysis of HER-2 protein at the femtogram levels. 
The specificity of the biosensor was evaluated. In this regard, we assessed the effect of 
three possible interferences (CEA, CA-15-3, and BSA proteins) on the electrochemi-
cal readouts (Additional file 1: Fig. S5A, B). The one-by-one interfering effects and also 
the cumulative effect of them were checked. Also, the 10 and 100 folds of interferences 
concentrations were applied in cumulative format for better comparison. Based on the 
recorded results, the mentioned proteins have little effect on the signals. Additionally, 
the prepared bioassay was successfully checked in normal serum samples by spiking the 
target HER-2 protein.

To evaluate the effect of electrode type on the recorded responses, three different 
electrodes were modified by the same procedure, and the electrochemical response was 
gained for 0.01  pg/mL of HER-2. Again, signals displayed a practicable reproducibil-
ity using our protocol (Additional file  1: Fig. S6A, B). The stability of signals was also 
assessed by the fabrication of electrodes under the optimized conditions and by record-
ing ten repetitive DPV signals exposed to 1 fg/mL HER-2. Data showed an RSD of 0.51% 
(Additional file 1: Fig. S7A, B) and Table 1).

The performance of biosensors can be compared together from several domains. First, 
the employed (nano) materials and implemented synthetic protocols should be attended. 
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It is highly significant that the synthesis strategies and the materials in the framework’s 
constructions be biocompatible, environmentally friendly, eco-friendly and easy to pre-
pare. The second option is the analytical performance, such as sensitivity, selectivity, 
stability, and repeatability, which should have as high as possible. As shown in Table 1 
the summarized details regarding other investigations can help us develop further anal-
yses. There are some tips that can be considered from the current experiments. First, 
our synthesis methodology is an electrosynthesis procedure that correlates with low rea-
gent consumption and high preparation rate, making the protocol more biocompatible 
and environmentally friendly. The latter point is that we used biocompatible materials 
to construct the sensing platform.  MoO3 is a cheap and biocompatible compound that 
makes a desirable combination with p-Tau biopolymer for biosensing purposes. The 
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Fig. 3 The SEM images of three different modified electrodes at different magnitudes of 200, 500 and 
1000 nm. A–C The electrode modified with electrosynthesized  MoO3 nanoparticles. D–F) The electrode 
modified with electrografted p‑Tau nano‑scaffolds. G–I The electrode modified with electrosynthesized 
 MoO3/p‑Taunanofilms
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obtained lower limit of quantification (LLOQ) of the present study offers a more sensi-
tive strategy for immunosensing of HER-2 in serum levels compared to other available 
approaches.
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Table 1 Comparison of the analytical features with other biosensors for HER‑2 protein

a Graphene oxide-polydopamine-grafted-ferrocene/Au@Ag nanoshuttles
b Hollow Ni@PtNi yolk-shell nanocages-thionine
c Cerium oxide/polyethylene glycol
d Metal-organic framework
e Multi-walled carbon nanotubes
f Molecularly imprinted polymer
g Poly(3,4-ethylene dioxythiophene)

Applied 
nanomaterial

Methode Synthesis 
mechanism

Synthesis 
time of 
nanomaterials 
(min)

LOD LDR Ref.

GCE Sandwich 
typed label 
assited

GO/PDA‑
FC‑Au@Ag 
 NSsa Ni@PtNi 
 HNCsb

Wet chemical 
method

0.01–100 ng/
mL

3.3 pg/mL Wang et al. 
2021a)

SPCE Sandwich 
typed‑ Label 
free

CeO2/PEGc Wet chemical 
method

0.001–0.5 ng/
ML and 
0.5–20.0 ng/
mL

34.9 pg/mL Hartati et al. 
2020)

GCE Direct‑Label 
free

Fe3O4@ TMU‑
21d

MWCNTse

Wet chemical 
method

1 pg/
mL‑100 ng/
mL

0.3 pg/mL Ehzari et al. 
2020)

Au SPE Direct‑label 
free

Phenol  MIPf Electropolymeri‑
zation

10–70 ng/mL 5.2 ng/mL Pacheco et al. 
2018)

GCE Direct‑label 
free

PEDOTg Electrosynthesis 0.1 ng/
mL‑1 μg/mL

45 pg/mL Wang et al. 
2021b)

GCE Direct‑label 
free

MoO3/p‑Tau Electrosynthesis 0.1 ng/
mL‑1 pg/mL

1 fg/mL This work
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Real sample analysis

A calibration curve was plotted using the standard addition method to obtain a more 
reliable and accurate analysis. This way, six different concentrations of HER-2, including 
0.1, 0.01, 0.001, 0.0001, 0.00001, and 0.000001 ng/mL, were prepared in the independ-
ent serum samples of a healthy individual (Fig. 5A, B). In comparison to Fig. 4, similar 
responses were recorded according to Fig. 5 but with decreased signals. This is corre-
lated to the matrix effect of the real untreated samples. 6 (A and B) is illustrated the 
obtained signal readouts for four HER-2 positive volunteer patients.

Pathological studies

Histopathological examination revealed the existence of HER-2+ cells inside the breast 
tissues with malignancies. The intensity of HER-2 and the number of HER-2+ cells were 
different in different samples enrolled in this study. The uncontrolled increase of HER-2 
correlates with aggressive histological remodeling and poor diagnosis in BC patients. 
We noted numerous infiltrating carcinoma cells into the mammary gland tissue, form-
ing aggregates. These cells were positive to a membrane tyrosine kinase, namely HER-2, 
showing malignancy. However, the intensity and number of HER-2+ varied in samples of 
different BC patients. These data showed that in HER-2 positive BC, ductal cells could 
express large levels of this factor that varies between the samples. The pathological 
images are presented in Fig. 6C.

Conclusions
This research successfully constructed a high-performance and ultrasensitive electro-
chemical immunoassay for BC analysis based on a biocompatible and environmentally 
friendly  MoO3/p-Tau nanofilm. The nanostructure was fabricated onto the electrode 
through the electrosynthesis approach as an environmentally and eco-friendly synthe-
sis route. It is suggested that p-Tau can be employed for two purposes: I) increasing the 
specific surface area for attachment of  MoO3 and antibody molecules; II) providing a 
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highly stable substrate to hold  MoO3 nanoparticles from releasing during the meas-
urements. Besides,  MoO3 was utilized to enhance the conductivity, boosting the signal 
intensity. The designed nano-immunoassay displayed a desirable LLOQ of 1 fg/mL with 
a wide dynamic range of 0.1 ng/mL to 1 fg/mL. We implemented two calibration plots 
(in standard solutions and healthy blank serum) to give more insights and prove the 
proposed nanobiosensor’s reliability. Also, to establish the applicability of the proposed 
framework, it was tested for the analysis of HER-2 positive real samples. Interestingly, 
the obtained results were confirmed by pathological studies. The results indicated an 
excellent ability for the biosensor in diagnosing breast cancer.
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modified electrode. E and F: MoO3/p‑Tau modified electrode. Figure S3. Effect of the deposition cycle numbers on 
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 K4[Fe(CN)6] (5 mM). Figure S4. Incubation time study of anti‑HER‑2 on the as‑prepared MoO3/p‑Tau/GCE at different 
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the presence of 10 pg/mL of CEA, BSA, and CA‑15‑3, different concentrations of HER‑2 (1pg/mL and 1 fg/mL) and 
also in the presence of a mixture of them. Figure S6. The reproducibility screening of the suggested framework 
at three different electrodes with the same procedure. Figure S7. The signal stability of the immunosensor for 10 
consecutive signals. Table S1. The elemental analysis results with  MoO3/p‑Tau modified electrode using Energy 
Dispersive X‑Ray Analysis (EDX).
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