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Abstract 

Background: Cancer stem cells (CSCs) are of great diagnostic importance due to their 
involvement in tumorigenesis, therapeutic resistance, metastasis and relapse.

Method: In this work, a sensitive electrochemical cytosensor was successfully estab‑
lished to detect HT‑29 colorectal cancer stem cells based on a nanocomposite com‑
posed of mesoporous silica nanoparticles (MSNs) and platinum nanoparticles (PtNPs) 
using a simple and fast electrodeposition technique on a glassy carbon electrode 
(GCE).

Results: According to SEM images, the PtNPs nanoparticles formed on the MSNs sub‑
strate are about 100 nm. As expected, high‑rate porosity, increased surface‑to‑volume 
ratio, provides appropriate local electron transfer rate and suitable platform for the effi‑
cient formation of PtNPs. These features allow direct and stable binding of biotinylated 
monoclonal antibody of  CD133 to streptavidin (Strep) and the subsequent availability 
of active sites for CSCs identification. Differential pulse voltammetry (DPV) results show 
that close interaction of  CD133

+ cells with monoclonal antibodies reduces charge trans‑
fer and electrical current, as confirmed by square wave voltammogram (SWV). Based 
on the recorded current versus number of CSCs, we noted that our developed system 
can sense CSCs from 5 to 20 cells/5 μL.

Conclusions: As a proof of concept, the designed nanobiocomposite was able to spe‑
cifically detect  CD133

+ cells compared to whole HT‑29 cells before magnetic activated 
cell sorting (MACS) process.

Keywords: Cancer stem cells, CD133, Platinum nanoparticles, Silica nanocomposite, 
Biosensor, Colorectal cancer

Introduction
Colorectal cancer, the second leading cause of cancer mortality, the second and third 
most common malignancies in men and women, respectively, is potentially treatable at 
stages 1 and 2 if early diagnosed (Ghoncheh et  al. 2016). The 5-year survival in these 
stages is about 70–90% (Haggar and Boushey 2009). This index is reduced to 50–70% 
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and 10–14% in stages 3 and 4 cases, respectively (Ghoncheh et  al. 2016). At stage 4, 
known as the distant (metastatic) era, the tumor branches out and spreads to distant 
organs and the lymph nodes through the blood and lymphatic vessels (Haggar and 
Boushey 2009; Markowitz and Bertagnolli 2009; Ricci-Vitiani et  al. 2009). It is clear 
that early detection in the primary phases prevents metastasis and death. However, 
countries do not regularly implement colorectal cancer screening programs such as 
CT scans and MRI. In a tumor, in addition to the highly proliferating cells involved in 
the development of neoplasm mass and maintaining tumor growth, there is a small 
subset of undifferentiated slow cycle cells called cancer stem cells (CSCs) (Reya et  al. 
2001; Bomken et al. 2010). CSCs, as resemble tumor roots (Vinogradov and Wei 2012), 
exhibit the similar properties to self-regenerating embryonic stem cells (ESCs) such as 
unbounded proliferation and the potential for multidirectional differentiation (Melo 
et al. 2017; Bu and Cao 2012). The difference is that CSCs cause uncoordinated tumor 
growth due to their inability to inhibit excessive proliferation and differentiation (Ricci-
Vitiani et al. 2009; Kreso and Dick 2014; Shimokawa et al. 2017). Common chemo and 
radiotherapy may reduce tumor volume and the number of somatic cancer cells from 
solid tumors, however, CSCs are generally not affected after these treatments (Hardin 
et  al. 2017). These cells may escape treatment-induced damage by adopting resistance 
strategies, such as decrease of reactive oxygen species (Reya et al. 2001; Bomken et al. 
2010; Diehn et al. 2009; Dalerba et al. 2007a; Baumann et al. 2008), increased DNA repair 
capacity, upregulation of metabolizing enzymes of cytostatic drugs such as aldehyde 
dehydrogenase (ALDH) and also expression of ABC transporters mediating multidrug-
resistant (Kolodny et  al. 2018; Pathania et  al. 2018). After completing the treatment, 
hidden CSCs (Heddleston et al. 2010; LaBarge 2010) are potentially able to reconstruct 
a secondary tumor (Hosonuma et  al. 2011; Tsai et  al. 2011) and are supposed to be a 
means of metastasis to distant organs (Chiou et al. 2010; Croker et al. 2009). Brabletz and 
Oscarson groups considered two subgroups for colorectal CSCs: migratory cancer stem 
cells (MCSCs) and stationary cancer stem cells (SCSCs) (Brabletz et al. 2005; Oskarsson 
et  al. 2014). Small fraction of circulating cancer stem cells (CCSCs) as agents for the 
development of new metastatic tumors, express CSC markers, including ALDH1,  CD24, 
 CD44,  CD166 and  CD133(Dalerba et  al. 2007a; Yang et  al. 2015; Liao et  al. 2014).  CD133 
is a membrane-bound pentaspan glycoprotein which is involved autophagy, matrix 
metalloproteinase functions and resistance to photodynamic therapy (PDT) and other 
variety of cellular processes (Li et al. 2012; Chenaghlou et al. 2021). Recent studies have 
indicated that therapeutic practices, including chemotherapy and radiation in  CD133

+ 
stem like cells, can increase the autophagic response in these cells (Dalerba et al. 2007b; 
Kazama et al. 2018; Chen et al. 2010; Todaro et al. 2010). As a result of a study, unlike 
 CD133

− cells, the isolation of  CD133
+ cells from colorectal tumors and then injection into 

mice led to niching and reconstructing tumors (Ricci-Vitiani et al. 2007; O’Brien et al. 
2007). To this end, accurate detection of rare and heterogeneous numbers of MCSCs 
in body fluids: urine, blood and saliva require the design and construction of highly 
sensitive platforms (Ozkumur et al. 2013; Fachin et al. 2017). Despite several advantages 
in common cancer diagnosis techniques including flow cytometry, polymerase chain 
reaction (PCR) and immunohistochemistry, they are relatively expensive, need experts, 
time-consuming, and also have low sensitivity (Xu et  al. 2020). Recently, many efforts 
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have been made to build portable electrochemical cell measurement tools by using low 
cost and biocompatible nanomaterials to identify the type, number and physiological 
parameters of the cells with selectivity and satisfactory sensitivity, easy operation and 
low or non-invasion and rapid response (Hasanzadeh et  al. 2009; Nasrollahpour et  al. 
2021a; Rasouliyan et al. 2021; Saghatforoush et al. 2009; Same et al. 2022; Vandghanooni 
et al. 2021; Babaei et al. 2010). In this work, a nanobiocomposite of mesoporous silica 
and platinum nanoparticles conjugated with  CD133 monoclonal antibody designed for 
cytosensing of HT-29 CSCs-CD133

+. Mesoporous silica nanostructure which applied as 
a substrate for effective foundation of PtNPs, due to its interest porosity, increases the 
mass and charge transfer of electroactive species thus improves electrical conductivity. 
The PtNPs along with conductivity, enhance the direct and stable binding of biotinylated 
antibodies via streptavidin immobilization. The organic–inorganic chemical composition 
of tetraethyl orthosilicate (Si(OEt)4) with desirable properties like mechanical strength, 
chemical and thermal stability, simple preparation via applying a negative potential 
under acidic conditions, provides a biocompatible platform in the construction of 
electrochemical based biosensors (Ciriminna et al. 2013; Farghaly and Collinson 2016; 
Isildak et  al. 2020; Karimzadeh et  al. 2020; Mansouri et  al. 2020; Nasrollahpour et  al. 
2021b, 2021c). The electrodeposition method established both MSNs/PtNPs substrate 
at the same time in an environmentally friendly manner known as the green synthesis. 
This process makes nanocomposites preparation done in one- pot, fast and especially 
low cost. Some properties of nanocomposites such as thickness and porosity can be 
adjusted by modifying the parameters of the manufacturing process like deposition time, 
potential and concentration (Farghaly and Collinson 2014; Rezapour Sarabi et al. 2022). 
Applying a negative potential at the optimal time, following OH- hydrolysis of ethanol 
and water and condensing TEOS monomer precursors on the working electrode, creates 
a mesoporous silica film (Deepa et al. 2003; Sibottier et al. 2006; Goux et al. 2009). Metal 
nanoparticles electrogeneration in basic conditions and direct reduction of metal ion 
complexes are among the methods that provide the electrodeposition of PtNPs from 
solution to the electrode surface (Therese and Kamath 2000).

Experimental
Materials

Tetraethyl orthosilicate (TEOS), chloroplatinic acid hexahydrate  (H2Cl6Pt.6H2O), 
6-mercapto-1-hexanol (MCH), hydrochloric acid and streptavidin were obtained 
from Sigma. Biotinylated monoclonal antibody of  CD133 protein was purchased from 
Novus Biologicals. Streptavidin-coated magnetic beads (MyOne) was purchased from 
Invitrogen. Merck products  H2SO4,  Na2HPO4,  KH2PO4,  NaNO3, KCl,  HNO3, NaOH, 
 Al2O3 and NaCl were used. Absolute ethanol and paraformaldehyde (PFA) were 
obtained from Scharlau and Fluka, respectively. Finally, the solutions purchased from 
Gibco include Trypsin–EDTA, penicillin/streptomycin (P/S), TrypLE and DMEM/LG.

Apparatus

Metrohm Autolab equipped with Nova software provided electrochemical synthesis 
and exploring of electrical signal changes on glassy carbon electrodes. The operation 
on the working, counter, and reference electrodes was organized by actuators of glassy 
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carbon (2 mm diameter), Platinum wire and silver/silver chloride (Ag/AgCl) electrodes, 
respectively. The acidity/basicity of the prepared material was measured using a pH 
meter (Corning, 120) also a magnetic stirrer (Heidolph) and an ultrasonic device 
(Transonic 420) were employed for homogenization. SEM imaging of electrodeposited 
nanocomposite was done by TESCAN MIRA3 instrument.

In situ synthesis of MSNs/PtNPs

Co-electrodeposition of MSNs/PtNPs nanocomposite was regulated according to the 
process described in the article (Xu et al. 2020). Briefly, a solution consisting of 100 μL 
TEOS monomer, 5  mL ethanol  (C2H5OH), 4  mL double-distillated  H2O (water) and 
0.16998  g  NaNO3 (sodium nitrate) was prepared. After aging for 1  h in 350  rpm, the 
sol–gel solution was obtained. The solution was prepared by adding 1 mL of 0.63 mM 
platinum salt  (H2Cl6Pt.6H2O) and 300  μL of HCl (0.1  mM) Finally, it was transferred 
to an electrochemical cell for electrodeposition at the optimal potential and time using 
chronoamperometry technique (E = −1.23  V for 50  s). The obtained electrode was 
nominated as PtNPs/MSNs-GCE.

Immobilization of streptavidin on MSNs/PtNPs modified electrode

At this stage, an appropriate amount of streptavidin was incubated at specific time on 
the electrode. To do this, 5 μL of 25 µg/mL streptavidin was coated at 4 °C for 3 h then 
to remove unattached material the Strep-PtNPs/MSNs-GCE was soaked in PBS for five 
minutes. Electrochemical techniques were applied to investigate the electrochemical 
behavior in a solution containing 0.1  M KCl, 5  mM potassium ferrocyanide and 
potassium ferricyanide in a ratio of (1:1). Ascending potentials were scanned from −0.6 
to 0.2 V at 0.1 V/s.

Immobilization of monoclonal antibody of  CD133 on the modified electrode

Here, 5  μL of 0.6  µg/mL biotinylated anti-CD133 was dropped on modified electrode 
(Strep-PtNPs/MSNs-GCE) and incubated for 2  h at 4  °C and after immersing in PBS, 
its electrical current changes were recorded according to the previous procedure. The 
obtained electrode was nominated as Ab-Strep-PtNPs/MSNs-GCE.

Cell culture

HT-29 cell line, bought from the Pasteur Institute of IRAN, and cultured in low glucose 
(DMEM) supplemented with 7% fetal bovine serum (FBS) and 1% P/S, at 5%  CO2 in a 
37 °C humid incubator. Following growth and achieving 80% of confluency, the cells were 
detached from culture flasks, adding TrypLE, collected and centrifuged in 1500  rpm 
at 10  min, then washed. Cell count was revealed using a Neubauer hemocytometer 
chamber.

Magnetic activated cell sorting (MACS)

In the following the biotinylated  CD133 antibody were incubated with streptavidin-coated 
magnetic beads (MyOne), mixed every 15 min for 5 h. Then the HT-29 cells suspension 
mixed with  CD133 antibody-beads for 2 h at 4 °C. After washing the MACS column, the 
incubated cells with  CD133-MyOne beads were passed through a LS-column. Finally, the 
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cells crossed the column as negative control and the remaining cells in the column were 
separated from the column and used as  CD133

+ cells and subjected to the calibration 
curve. It should be noted that, negative and positive cells were counted and about 1.75% 
of the cells was noted to be  CD133

+.

Results
Investigation of electrodeposition of MSNs/PtNPs on the working electrode

To achieve the optimal potential of the desirable co-electrodeposition of MSNs/
PtNPs nanocomposite on the GCE, the solution content monomers of nanocomposite 
deposited in constant time (40  s) and different potential via CHA technique (−1.1 to 
−1.25  V) and signal amplification were checked through DPV technique. Finally, the 
best nanocomposite for signal amplification was observed at (E = −1.23 V for 50 s).

Effect of MSNs/PtNPs

To investigate the synergistic signal amplification of nanocomposite, MSNs and PtNPs 
were synthesized individually. The peak heights obtained from both were compared with 
the total current. Their peak height was less than the co-electrodeposition of the nano-
composite. The comparison of peak currents is illustrated in Fig. 1.
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Fig. 1 Signal amplification in co‑electrodeposition of MSNs/PtNPs nanocomposite in CV (A), EIS (B), SWV (C) 
and DPV (D) techniques with their histograms
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PtNPs was probably deposited as an incomplete film with low density so the signal 
amplification was weaker than when electrosynthesized simultaneously with MSNs. The 
porosity formed in mesoporous silica increases the surface-to-volume ratio, improves 
the electron transfer rate and provides a suitable place for the genesis of active platinum 
nanoparticles.

Optimization of the incubation time of streptavidin

After attaining the appropriate concentration of streptavidin at 4 °C, the optimal incuba-
tion time at the proper concentration was checked. To do that, 5 μL of 25 µg/mL strepta-
vidin was coated on PtNPs/MSNs-GCE for various times of (2, 3, 6 and 24 h). According 
to the recorded DPV histogram, 3 h incubation seems to be the most appropriate time 
for streptavidin layering in PtNPs/MSNs-GCE, whereas overcoating of the modified 
electrode in excess time led to electrical insulation. The incubation time of streptavidin 
is shown in Fig. 2.

Optimization of monoclonal biotinylated  CD133 antibody concentration

To obtain the suitable concentration of the monoclonal antibody on the modified 
electrode, four different concentrations of Ab-CD133 (60, 6, 0.6, 0.006  µg/mL) were 
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immobilized on Ab-Strep-PtNPs/MSNs-GCE and incubated for 2  h at 4  °C. At a 
concentration of 0.6 µg/mL, not only the DPV peak height reduction is not notable, 
but also can cover the electrode surface optimally and create high efficiency active 
sites. Therefore, it was a favorable antibody concentration for next step.

Optimization of the incubation time of monoclonal antibody of  CD133

After reaching the appropriate concentration of anti-CD133 and incubation temperature, 
the optimal incubation time was investigated. To do this, 5 μL of 0.6 μg/mL anti-CD133 
was coated on modified GCE at various times (0.5, 1, 2, 3 and 4 h) and then, as in the 
previous steps, the peak height was monitored by DPV and SWV techniques. The results 
showed that 2-h period was sufficient time for stable incubation and direct binding via 
biotin–streptavidin antibody while maintaining the efficiency. The optimization of incu-
bation time of the capture antibody is presented in Fig. 3.
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Electrode preparation steps

The glassy carbon electrode was first washed physically and electrochemically by pol-
ishing alumina and then applying potentials in a solution of sulfuric acid and sodium 
hydroxide, respectively. Then PtNPs/MSNs nanocomposite was electrodeposited by 
applying the optimum potential at the optimum time (−1.23 V for 50 s). Subsequently, 
the 25 µg/mL of streptavidin was incubated on the PtNPs/MSNs/GCE for 3 h at 4  °C. 
Finally, the 0.6  µg/mL of biotin-containing anti-CD133 was stabilized on Strep-PtNPs/
MSNs-GCE for 2 h at 4 °C. Eventually 5 µL of 1 µM MCH was poured onto the electrode 
for 30 min to block unspecified sites. At the end the electrode was washed carefully with 
PBS. The electrode preparation steps were step by step confirmed via different electro-
chemical techniques and presented in Fig. 4.

Study of surface morphology and properties

The surface of the fabricated cytosensor at each stage of the foundation was exam-
ined morphologically. Figure  5 shows clear scanning electron microscopy (SEM) 
images of the porous structure formed on the electrode and the proper stabilization 
of cancer stem cells on a modified electrode at different magnifications. In order to 
validate the correct operation processes dot mapping and energy dispersive X-ray 
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(EDX) were checked. The presence of silica, oxygen and platinum atoms shown in 
Additional file 1: Table S1 confirms the successful formation of PtNPs/MSNs on the 
GCE.

Calibration curve

To expose the analyte and plot the calibration curve, a certain number of picked 
up  CD133

+ cells were incubated on the modified electrode  (CD133
+ cells-Ab-Strep-

PtNPs/MSNs-GCE) at 37 °C for 1 h, and then rinsed in PBS slowly. The linear range 
of 5–20 cells in SWV technique demonstrated  CD133

+ CSCs was detected by the 
proposed cytosensor with R2 = 0.9642. The calibration curve and related voltammo-
grams are shown in Fig. 6.

Fig. 5 A–C SEM images of the electrodeposited MSNs on the GCE, D–F co‑electrodeposition of MSNs/
PtNPs nanocomposite, and G–I immobilized cells on the modified electrode  (CD133

+ cells‑Ab‑Strep‑PtNPs/
MSNs‑GCE) in different magnifications
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Repeatability, reproducibility, stability and selectivity

To evaluate the cytosensor repeatability, the RSD calculation obtained from the SWV 
voltammogram for a concentration of 5 cells in 5 μL of  CD133

+ HT-29 for five repetitive 
measurements was about 1.5%. This satisfactory repeatability refers to the unique and 
regular synthesis of MSN-PtNPs in GCE as well as the direct binding of antibodies via 
the streptavidin to the nanocomposite.

The analytical performance of the two processed GC electrodes at the concentration of 
20 cells/5 μL HT-29 CSC was evaluated in the same way. The attained relative standard 
deviation (RSD) of 1.35% indicates satisfactory cytosensor reproducibility. To check the 
stability of the cytosensor, 8 repetitions were recorded from SWV voltammograms. It 
should be noted that the SWV voltammetry technique was repeated by scanning the 
potential from −0.6 to 0.2 V at scan rate of 0.1 V/s in an electrochemical cell. The RSD 
of the obtained results was 2.66% at the concentrations of 15 cells/5 μL, indicating its 
suitable stability. In the selectivity test, following incubation of somatic cancer cells 
(SCC) and cancer stem cells (CSC) under the same experimental conditions, comparing 
DPV responses verified the selective diagnosis of CSC by the proposed cytosensor. 
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Fig. 6 Calibration curve, A the SWV technique’s response in different number of  CD133
+ cells, B the SWV 
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relationship between the peak heights versus the cells number
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As shown in Additional file  1: Fig. S3, the selectivity experiments were performed on 
three different concentrations 5, 15 and 20 cells/5 μL. Remarkable decrease was not 
observed in electrochemical signals resulting from the somatic cancer cells, which could 
be indicate that the expression of  CD133 on the CSC surface is significant (roughly two 
times) in comparison with the somatic cancer cells.

The comparative results showed the good selectivity of the developed cytosensor.

Discussion
Various nano-electrochemical cytosensors have been explored, with the aim of building a 
device for accurate, highly sensitive and specific sensing, using a variety of nanomaterials in 
various synthesis methods for evaluation of cancer cells which was studied summarized in 
f. A sandwich-type electrochemical cytosensor has been designed based a two-step bind-
ing recognition mechanism of tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL) on leukemia cells surface to HRP-TRAIL-Fe3O4@Au hybrid nanoprobes and 
the quantitative characterization of DR4/DR5 expression status on cell surfaces through 
dendrimer-stabilized Au nanoparticles (Au DSNPs) (Zheng et al. 2013). It was noted that 
the sandwich-type cytosensor improves CTCs capture efficiency and boosts the sensitiv-
ity by reason of the binding and detection of surface proteins on both cell sides, however, 
designing and fabrication of probes is quite complex and multi-stage, time-consuming 
and costly. Besides, prolonged antibody incubation, reducing the amount of proper bind-
ing resulting from random and non-specific binding, are some of the challenges that need 
to be addressed. Apart from the challenges on the complexity and prolongation of nano-
structures and nanoprobes processing time in sandwich-type electrochemical sensors, the 
issue of environmental and personal damage in dealing with harmful substances in this 
type of procedure is worth considering. Likewise, the stability and adhesion of chemically 
processed nanostructures on the electrode is reduced because they are spread on the elec-
trode. Naturally, the distribution and dripping of them on the electrode has little stability 
and adhesion. Maintaining the stability and efficiency of HRP-labeled metal nanoprobes 
prepared during a long process and consuming high thermal energy is another problem 
of the biosensor durability. Overall, the response time of the bioassay increases following 
the long incubation time of the nanoprobes in sandwich strategy (Sun et al. 2016). In this 
work, a novel PtNPs/MSNs nanocomposite was designed for a label-free, rapid and sensi-
tive cytosensing of HT-29 CSCs. Both materials of this biocompatible nanocomposite were 
simultaneously co-electrodeposited in less than one minute. Electrodeposition method 
applied is a simple approach for in situ, fast and one pot composing of PtNPs/MSNs nano-
composite. It is also a type of green synthesis which minimizes the consumption and pro-
duction of pollutants and environmentally harmful waste (The summary of the previously 
prepared cytosensors for the evaluation of CTCs is shown in Table 1).

Conclusion
Evaluation of CSCs-CD133

+ based on PtNPs/MSNs nanocomposite in the electrochemi-
cal platform succeeded in tracking linear range of 5–20 cells/5  μL suitable for cancer 
detection in the early stages of tumor formation. It has a significant sensitivity compared 
to flow cytometry as a reference method. So may be a good candidate for use in inte-
grated diagnostic tools for low-cost clinical diagnosis if other antibodies specific to this 
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cell line are involved. The fusion of the mesoporous structure of silica beside active and 
adhesive PtNPs, increases the mass and charge transfer rate, and provide many active 
sites for the binding of stable and direct biotinylated monoclonal antibody of  CD133 via 
the streptavidin–biotin interaction. Thus, the cytosensor responded to the lowest num-
ber of conjugated cell to the  CD133 monoclonal antibody. Despite many efforts to iden-
tify circulating tumor cells (CTCs), the calculation of CTCs number is not practically 
applicable due to small fraction of these cells in blood and fluctuation in their popu-
lation. These conditions do not provide effective information for clinicians to precisely 
follow up the cancer patients. Perhaps, if more sophisticated cytosensors are developed 
to detect CSCs, as part of CTCs, and related by products such as exosomes, we will 
be more successful detection of tumorigenesis in the initial phase and also monitor-
ing of the therapeutic efficiency. Especially, these conditions are vital in patients with 

Table 1 A summary of the proposed cytosensors for the evaluation of CTCs

1. glassy carbon electrode, 2. horseradish peroxidase, 3. tumor necrosis factor (TNF) related apoptosis-inducing ligand, 4. 
dendrimer-stabilized Au nanoparticles, 5. poly(diallyl dimethylammonium chloride) nitrogen-doped carbon nanotubes, 
6. gold nanoparticles, 7. 5.2,2′:5′,2ʺ-terthiophene-3′ p-benzoic acid, 8. capture antibody, 9. nanostructured collagens, 10. 
hydrazine, 11. graphene-three-dimensional nanostructure gold nanocomposites, 12. magnetic glassy carbon electrode, 
13. reduced graphene oxide, 14. molybdenum disulfide, 15. 6-mercapto-1-hexanol, 16. monodisperse colloidal carbon 
nanospheres, 17. paper working electrode, 18. polyhedral-Au@Pd alloy nanoparticles, 19. nitrocellulose membranes, 20. 
mesoporous silica nanostructure, 21. human pluripotent stem cells

Working 
electrode

Platform System Cell type DL (cells 
 mL−1)

LDR (cells 
 mL−1)

Refs.

GCE1 HRP2‑TRAIL3‑
Fe3O4@Au
Au  DSNPs4/
PDCNx

CV HL‑60 & 
Jurkat

40 Zheng et al. 
(2013)

GCE AuNPs6/
pTTBA7/
CapAnti8

(nCOL)9‑ 
AuNPs‑ 
(Hyd)10

EIS SK‑BR3 & 
MCF‑7

28 45–100,000 Pallela et al. 
(2016)

GCE G‑3D11‑Au EIS & CV 143B 1292 5.0 ×  103 to 
5 ×  106

Wu et al. (2018)

MGCE12 (rGO13/
MoS2

14) 
‑Fe3O4NPs

EIS & CV MCF‑7 6 15 to 45 Tian et al. 
(2018a)

GCE Fe3O4/MnO2/
Au@Pd–HRP–
probe
MCH15/
aptamer/
AuNPs

EIS & DPV HepG2 15 1 ×  102 to 
1 ×  107

Sun et al. 
(2016)

GCE CNS16@AuNP/ 
chitosan

DPV A549 14 4.2 ×  10−1 to 
4.2 ×  10−6

Zhang et al. 
(2019)

PWE17 Au@3D‑rGO/
PH–Au@Pd 
 NPs18

DPV & 
colorimetric

MCF‑7 20 50 to  107 Wang et al. 
(2018)

GCE rGO/AuNPs‑ 
CuO

DPV MCF‑7 27 50 to 7 ×  103 Tian et al. 
(2018b)

NC19 AuNPs– 
SSEA‑4 
antibody 
conjugates

Naked eye or 
strip reader

hPSCs21 10,000 1 ×  104 to 
2 ×  105

Wu et al. (2013)

GCE MSN20‑Pt DPV and SWV CSC 5 5 to 20 This work
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high-degree tumors, because of resistant CSCs. These cells can circulate in body flu-
ids and initiate new tumor foci in remote sites which need to be tracked. To this end, 
the range of cytosensor detection for certain cell types should be in a way to diagnose 
minimum CTCs in the initial phase of tumor development. It seems that detection of 
tumor cells outside this range is not clinically effective because other conventional ana-
lytical assays such as CBC, histological examination can help us in the diagnosis of can-
cer patients. Interestingly, in patients with different cancer types at phases II, III clinical 
signs are easily detectable.
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