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Background
Nanoparticles made from high-Z materials are promising agents to increase radiosen-
sitivity of cancer cells during the application of radiation therapy. Hainfeld et al. (2004, 
2008) demonstrated therapeutic enhancement with gold nanoparticles (GNP) in a 250 
kVp X-ray beam. The dose-enhancing effect was attributed to the photoelectric effect 
and the increased generation of Auger electrons (Pradhan et al. 2009; Jelveh and Chith-
rani 2011; Dorsey et  al. 2013; Kumar et  al. 2013). Further studies have confirmed the 
dose-enhancing effect of GNP in 6 MV X-ray beams, an energy range that is typically 
used for clinical radiation therapy (Detappe et al. 2013; Berbeco et al. 2011; Cho 2005; 
Jones et al. 2010; Lin et al. 2014; Robar et al. 2002; McMahon et al. 2008; Ngwa et al. 
2014).

However, even though gold nanoparticles may be efficient radiosensitizers, it remains 
difficult to measure their exact concentration within the tumor with current clinically 
available imaging methods. To address this issue, multimodal nanoparticles have been 
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AGuIX are gadolinium-based nanoparticles developed mainly for imaging due to 
their MR contrast properties. They also have a potential role in radiation therapy as a 
radiosensitizer. We used MRI to quantify the uptake of AGuIX in pancreatic cancer cells, 
and TEM for intracellular localization. We measured the radiosensitization of a pancre-
atic cancer cell line in a low-energy (220 kVp) beam, a standard 6 MV beam (STD) and 
a flattening filter free 6 MV beam (FFF). We demonstrated that the presence of nano-
particles significantly decreases cell survival when combined with an X-ray beam with 
a large proportion of low-energy photons (close to the k-edge of the nanoparticles). 
The concentration of nanoparticles in the cell achieves its highest level after 15 min 
and then reaches a plateau. The accumulated nanoparticles are mainly localized in the 
cytoplasm, inside vesicles. We found that the 6 MV FFF beams offer the best trade-off 
between penetration depth and proportion of low-energy photons. At 10 cm depth, 
we measured a DEF20 % of 1.30 ± 0.47 for the 6 MV FFF beam, compared to 1.23 ± 0.26 
for the 6 MV STD beam. Additional measurements with un-incubated nanoparticles 
provide evidence that chemical processes might also be contributing to the dose 
enhancement effect.
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proposed that combine both therapeutic and diagnostic functionality. Mignot et al. 2013 
developed a gadolinium-based nanoparticle, AGuIX, which is a non-toxic magnetic 
resonance contrast agent and sufficiently small (sub-5 nm diameter) to allow for renal 
clearance (Le Duc et al. 2014). With an atomic number of Z = 64, gadolinium is a high-Z 
material and therefore also contributes substantial radiation dose enhancement. (Sancey 
et al. 2014).

Previous assessment of AGuIX nanoparticles has mostly focused on their imaging 
properties (Di Corato et al. 2013; Le Duc et al. 2011; Bianchi et al. 2014a, b; Paul et al. 
2014). In vitro experiments have included different cell lines and preclinical irradiation 
beams (microbeam radiation therapy, low-energy X-ray). Researchers have shown early 
evidence of radiosensitization (Bianchi et al. 2013; Aspord et al. 2013; Mowat et al. 2011; 
Porcel et  al. 2014; Stefančíková et  al. 2014; Luchette et  al. 2014). In addition, in  vivo 
experiments with intravenous or intra-tumoral injection for subcutaneous and ortho-
topic lesions have been performed in preclinical radiation beams (Le Duc et  al. 2011; 
Bianchi et al. 2014a).

The aim of the current study is to characterize the uptake of the AGuIX nanoparti-
cles in pancreatic cancer cells by magnetic resonance imaging (MRI), and investigate the 
radiation dose enhancement effect attributable to AGuIX when irradiating the cells with 
a clinical linear accelerator at 6 MV. This represents the first step towards demonstrat-
ing an in vivo effect for pancreatic cancer. The AGuIX platform is particularly relevant 
for pancreatic cancer due to the poor prognosis, proximity of organs at risk, and target-
ing difficulty for this disease in radiation therapy. AGuIX offers a solution that is highly 
compatible with the current trend in radiation oncology towards MRI-based patient 
simulation and MRI-Linac treatment devices (Raaymakers et al. 2011; Keall et al. 2014). 
There may be a strong future for AGuIX in future MRI-guided radiation therapy for pan-
creatic cancer.

Methods
Cell culture

Panc1 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM), supple-
mented with 10 % fetal bovine serum (FBS) (Sigma, USA), 1 % Penicillin Streptomycin 
Glutamine (Invitrogen, USA) and were stored in a humidified incubator at 37 °C and 5 % 
CO2.

AGuIX nanoparticles (Nano‑H Inc., France)

The nanoparticles are composed of a polysiloxane shell surrounded by DOTA 
(1,4,7,10-tetra-azacyclododecane-1-glutaric anhydride-4,7,10-triacetic acid) covalently 
bound to the inorganic matrix and Gadolinium (Fig. 1a). The size of each nanoparticle 
was measured by dynamic light scattering (DLS) and is 5 ± 0.1 nm (Fig. 1d) with a mass 
of 10 ± 1 kDa. More detailed information on the production process of the nanoparti-
cles may be found in the references (Detappe et al. 2013).

AGuIX uptake analysis with MRI and ICP‑MS

The concentration of the nanoparticles inside the cells was analyzed with a Bruker Bio-
spin 7T Magnetic Resonance Imaging (MRI) scanner. First, a calibration curve without 
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cells was acquired for various concentrations of nanoparticles in the cell culture solu-
tion. The concentration of AGuIX particles used for the experiment is given in gado-
linium equivalent species and chosen based on published literature (Rima et al. 2013). 
Cells were incubated with 0.5 mM (0.5 mg/L) of AGuIX at 37 °C and 5 % CO2 for 30 min, 
1 h, 3 h, 6 h, 24 h and 48 h. After incubation, the cells were washed and trypsinized to 
remove any excess nanoparticles in the solution before scanning. All MRI scans featured 
a RARE-T1 map imaging-sequence with 2 mm slice thickness, repetition time of 10 ms, 
echo time of 21.4 ms, echo train length of 4, flip angle of 180°, and matrix size 256 × 128 
pixels. Each measurement was performed in triplicate.

Inductively coupled plasma mass spectrometry (ICP-MS) was used to validate the 
MRI results. For this procedure, the cells were dissolved in a radio-immuno precipitation 
RIPA buffer and then suspended in water until analysis. ICP-MS is used to determine 
the exact quantity of Gadolinium. As with the MRI measurements, incubation times 
were 30 min, 1 h, 3 h, 6 h, 24 h and 48 h. Each time point was measured in triplicate.

Localization of AGuIX within Panc1 cells

Transmission electronic microscopy (TEM) was performed to investigate the local 
nanoparticle distribution within the cells. A concentration of 0.5  mM of AGuIX was 

Fig. 1  AGuIX uptake studies. a Schematic representation of the activation induced by the external X-ray 
irradiation on the AGuIX. b TEM images (3000×) depict the active endocytosis uptake of AGuIX into the 
tumor cells. Bar 5 µm. c Magnified TEM image (25000×) shows AGuIX nanoparticles captured by endosomal 
vesicles (black arrow) and carried into the cytoplasm. Bar 1 µm. d Hydrodynamic measurement of the AGuIX 
size. e Panc1 cells were incubated for different time points with 0.5 mM of AGuIX. The concentration in pg/
cell measured by MRI and crosschecked by ICP-MS. The MRI measurement is determined with a calibration 
curve allowing the translation between the concentration in AGuIX and the relaxivity time. For both methods 
of measurement, the uptake plateaus after 30 min
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incubated for 1 h with Panc1 cells, followed by washing out residual nanoparticles and 
staining with 4 % formaldehyde and 1 % glutaraldehyde in 0.1 M Pb for imaging.

Irradiation and setup

We investigated cell response to low-energy and high-energy photon irradiation for a 
dose range of 2–10 Gy. For low-energy experiments, we used a Small Animal Radiation 
Research Platform (SARRP) operated at 220 kVp (0.15  mm Cu filter) and a source to 
cell distance of 35 cm. For high-energy irradiations, we used a clinical linear accelerator 
(TrueBeam, Varian Inc, USA) operated at 6 MV with and without a flattening filter in 
the beam line. Using a flattening filter is the current standard (STD) in radiation therapy 
while the use of flattening filter free beams (FFF) is still relatively novel to clinical appli-
cation. Cells were placed on 5 cm of water equivalent material and another 10 cm on top 
to allow for full scattering and back scattering conditions. The source to cell distance 
was 100 cm, field size 10 × 10 cm2 and dose rate 400 cGy/min for both STD and FFF 
deliveries.

Clonogenic assay

Panc1 cells were incubated in DMEM with 0.5 mM of AGuIX following the specifica-
tions below, and then irradiated. After irradiations, the cells were incubated for another 
4  h; afterwards they were washed with PBS, trypsinized and counted. The cells were 
replated in 10 cm dishes at 300 cells per plate and allowed to grow for 10 days, before 
staining with a 1 % crystal violet and 10 % ethanol dye solution. The platting efficiency 
was 67 ± 7 %. The plates were digitally scanned and automatically counted with software 
developed in our group. Measurements were performed in triplicate.

For the 6 MV irradiations, the cells were incubated 1 h and the medium unwashed. For 
the low-energy photon experiments, 4 different configurations were investigated:

A.	Irradiation without any nanoparticles.
B.	 Cells were not incubated with nanoparticles. Nanoparticles were placed in the media 

just prior the irradiation. We called this configuration +IR/−incubation.
C.	Cells were incubated with the nanoparticles and the media was changed just prior 

the irradiation. We called this +IR/+washing.
D.	Cells were incubated with the nanoparticles and were irradiated. We called this 

+IR/−washing.

The (B) experiment (+IR/−incubation) is a test of the hypothesis that a dose enhance-
ment effect can be caused by nanoparticles located outside the cell. A positive result 
supports the presence of some long-range effects beyond just photoelectric and Auger 
processes.

Data analysis

We quantified the effect of the nanoparticles utilizing three methods commonly found 
in the literature (Sancey et al. 2014; Jain et al. 2011; Chithrani et al. 2010; Roeske et al. 
2007). The Dose Enhancement Factor (DEF) is the ratio of the area between the survival 
curves with and without nanoparticles. The DEF20 % is the ratio of doses at 20 % survival 
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for irradiation without nanoparticles versus with nanoparticles. The sensitivity enhance-
ment ratio at 4 Gy (SER4Gy) is the ratio of survival fractions at 4 Gy for irradiation with-
out and with nanoparticles.

To characterize the radiation response of the Panc1 cells with and without AGuIX, we 
employed the classical linear quadratic model (LQM):

Here, S is the cell survival fraction, D the irradiation dose and α and β are parameters 
representing direct lethal and sub-lethal damage, respectively. Statistical significance of 
cell survival changes with the application of nanoparticles is calculated using a Kruskal–
Wallis test.

Results and discussion
Uptake measurement

Results from both MRI and ICP-MS uptake analyses are shown in Fig. 1. Both methods 
give consistent results and show that AGuIX uptake saturates at about 1.25 pg per cell 
after 30 min incubation time for 0.5 mM of AGuIX incubated.

TEM imaging (Fig. 1b, c) reveals that after 1 h of incubation, the nanoparticles are pre-
dominantly localized in vacuoles in the cytoplasm. This result is in agreement with the 
previously published studies that applied AGuIX to other cell lines (Stefančíková et al. 
2014; Rima et al. 2013).

MRI and ICP-MS results both show a constant level of nanoparticles inside the cells 
after 30 min of incubation. The MRI measurement is systematically larger than the ICP-
MS measurement. This is because the T1 signal is sensitive to the size of nanoparticles, 
which decrease during hydrolysis (which occurs due to the low AGuIX concentration) 
(Le Duc et al. 2014).

Activation of the nanoparticles

For the highest probability of a photoelectric interaction with the K-shell of Gadolinium, 
the incident photon should have an energy just above 50 keV. Figure 2a shows a com-
parison of the low-energy photon spectra for the beams used in this study. Spectra are 
generated using EGSnrc Monte Carlo code (Tsiamas et al. 2011, 2014).

From these distributions, it is clear that 220 kVp is expected to have the highest dose 
enhancement. However, it is not clinically feasible to use low-energy photons to treat 
the majority of patients (especially pancreatic cancer patient) due to the poor penetra-
tion depth and skin-sparing properties. Figure 2b shows a comparison of the percentage 
depth dose (PDD) for the radiation beams used in this study. The best trade-off between 
penetration depth and proportion of low-energy photons exists for the 6 MV FFF beam. 
Further modifications of the 6 MV beam, including the use of a low-Z target, (Parsons 
et al. 2014) may also improve the dose enhancement while preserving the deep penetra-
tion properties.

S(D) = exp
(

−αD − βD2
)



Page 6 of 9Detappe et al. Cancer Nano  (2015) 6:4 

Dose enhancement effects

A significant radiosensitization effect was observed for all the clonogenic assays 
performed (Fig.  3). Results of the dose enhancement studies are summarized in 
Table  1. The dose enhancement effect appears to increase with the proportion of 
low-energy photons in the spectrum as expected (Detappe et  al. 2013; Berbeco 
et  al. 2011). For the high-energy (clinical) photon beams, cell killing is significantly 
increased by the removal of the flattening filter in the FFF beam, compared to the 
STD beam (p = 0.014, Wilcoxon). The SER4Gy is 1.20 ± 0.04 for the FFF irradiation 
and 1.12 ± 0.04 for the STD. The DEF20 % is 1.30 ± 0.05 for the FFF and 1.23 ± 0.03 
for the STD.

While the physical property of the incident radiation beams clearly provides a 
therapeutic advantage, there may be other factors contributing as well. Figure 1b, c 
shows the nanoparticles clustered inside the cytoplasm, away from the DNA. Radio-
sensitization was observed for this scenario as well as for non-incubated nanopar-
ticles (located outside the cell) (Fig.  3d). McMahon et  al. (2011) demonstrated the 
role of Auger electrons to create a local effect and the impact of nanoparticle clus-
tering. This local effect increases the formation of reaction oxygen species (ROS), 
such as OH°, H2O2, or HOCl. Some of these ROS have high chemical stabilities and 
a long-range action (few mm) that may increase the cell death even if the nanopar-
ticles are not localized in the cells. The results shown in Fig. 3d are similar to those 
obtained by Porcel et al. (2014) for hadrontherapy. Thus, in addition to the physical 
properties, a biological or chemical effect should be explored to explain the measured 
radiosensitization.

Fig. 2  Representation of the difference between the preclinical beam (SARRP) and the clinical beam. a The 
3 different spectra (220 kVp, 6 MV FFF, and 6 MV STD) were represented near the k-edge of the Gadolinium 
(50.2 kV). Calculation were performed with Monte Carlo simulation at 35 cm source–skin distance; 12 mm 
circular field size for the 220 kVp machine, and at 90 cm source–skin distance; 10 cm depth; 10 × 10 cm2 field 
size for the 6 MV irradiations. b Percentage depth dose (PDD) for the 3 photon beams. The maximum dose for 
the 220 kVp occurs at the surface while it is at approximately 1.5 cm for both 6MV beams
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Conclusion
AGuIX nanoparticles create significant dose enhancement in Panc1 cell lines for low- 
and high-energy photon irradiation. Using a 6 MV flattening filter free (FFF) beam 
improves dose enhancement compared to a standard 6 MV beam. Because of their con-
trast in MRI images, AGuIX have excellent potential as theranostic agents (Lux et  al. 
2011; Kunjachan et al. 2012).

Fig. 3  Radiation dose enhancement studies. Clonogenic assays of Panc1 tumor cells post-AGuIX incubation 
(1 h). a Schematic view of the irradiation setup for the preclinical beam (220 kVp) and b for the clinical beam 
(6 MV). The flattening filter is removed for the FFF irradiations. c Schematic representation of the clonogenic 
assay for the preclinical irradiations. Clinical irradiations were performed with the “washing (-)” situation. Blue 
circles represents the cells. Yellow circles represent the nanoparticles. d Preclinical irradiation setup (SARRP) 
was used to induce radiation enhancement effect in AGuIX using a 220 kVp beam (left) and clinical irradiation 
setup (6 MV beam) was used to treat cells with (STD) and without (FFF) flattening filter (right). Linear quad-
ratic models were fitted to experimental data



Page 8 of 9Detappe et al. Cancer Nano  (2015) 6:4 

Authors’ contributions
AD, JR and HK performed the irradiations studies. AD and SK performed the biological part of the study. JR and PT gener-
ated the simulation data. AD, SK and RB conceived the study, and participated in its design and coordination. OT pro-
vided the nanoparticles. All authors helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests 
The authors declare that they have no competing interests.

Author details
1 Radiation Oncology Department, Dana‑Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical 
School, Boston, MA 02215, USA. 2 Institut Lumière‑Matière, Université Claude Bernard, 69000 Lyon, France. 3 Department 
of Medical Physics, Nova Scotia Cancer Centre, Dalhousie University, Halifax, NS B3H 1V7, Canada. 

Received: 26 March 2015   Accepted: 25 August 2015

References
Aspord C, Laurin D, Janier MF, Mandon CA, Thivolet C, Villiers C, Mowat P, Madec AM, Tillement O, Perriat P, et al. Paramag-

netic nanoparticles to track and quantify in vivo immune human therapeutic cells. Nanoscale. 2013;5(23):11409–15.
Berbeco R, Ngwa W, Makrigiorgos M. Localized dose enhancement to tumor blood vessel endothelial cells via megavolt-

age X-rays and targeted gold nanoparticles: new potential for external beam radiotherapy. Int J Radiat Oncol Biol 
Phys. 2011;81(1):270–6.

Bianchi A, Dufort S, Lux F, Courtois A, Tillement O, Coll JL, Crémillieux Y. Quantitative biodistribution and pharmacokinet-
ics of multimodal gadolinium-based nanoparticles for lungs using ultrashort TE MRI. MAGMA. 2014b;27(4):303–16.

Bianchi A, Dufort S, Lux F, Fortin PY, Tassali N, Tillement O, Coll JL, Crémillieux Y. Targeting and in vivo imaging of non-
small-cell lung cancer using nebulized multimodal contrast agents. Proc Natl Acad Sci USA. 2014a;111(25):9247–52.

Bianchi A, Lux F, Tillement O, Crémillieux Y. Contrast enhanced lung MRI in mice using ultra-short echo time radial imag-
ing and intratracheally administrated Gd-DOTA-based nanoparticles. Magn Reson Med. 2013;70(5):1419–26.

Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, Hill RP, Jaffray DA. Gold nanoparticles as radiation 
sensitizers in cancer therapy. Radiat Res. 2010;173(6):719–28.

Cho SH. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a 
preliminary Monte Carlo study. Phys Med Biol. 2005;50(15):N163–73.

Di Corato R, Gazeau F, Le Visage C, Fayol D, Levitz P, Lux F, Letourneur D, Luciani N, Tillement O, Wilhelm C. High-resolution 
cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue con-
structs. ACS Nano. 2013;7(9):7500–12.

Detappe A, Tsiamas P, Ngwa W, Zygmanski P, Makrigiorgos M, Berbeco R. The effect of flattening filter free delivery on 
endothelial dose enhancement with gold nanoparticles. Med Phys. 2013;40(3):031706.

Dorsey JF, Sun L, Joh DY, Witztum A, Kao GD, Alonso-Basanta M, Avery S, Hahn SM, Al Zaki A, Tsourkas A. Gold nano-
particles in radiation research: potential applications for imaging and radiosensitization. Transl Cancer Res. 
2013;2(4):280–91.

Le Duc G, Miladi I, Alric C, Mowat P, Bräuer-Krisch E, Bouchet A, Khalil E, Billotey C, Janier M, Lux F, et al. Toward an image-
guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano. 2011;5(12):9566–74.

Le Duc G, Roux S, Paruta-Tuarez A, Dufort S, Brauer E, Marais A, Truillet C, Sancey L, Perriat P, Lux F, et al. Advantages of 
gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for 
glioma treatment. Cancer Nanotechnol. 2014;5:4.

Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm 
Pharmacol. 2008;60(8):977–85.

Table 1  Dose enhancement effect in terms of DEF, DEF20 % and SER4Gy for Panc1 cells incu-
bated with 0.5 mM AGuIX

p values were calculated using a Kruskal Wallis to test the effect of the nanoparticles with the control

*** p < 0.001

Irradiation

Preparation 220 kVp 6 MV FFF 6 MV STD

AGuIX no  
incubation

AGuIX 1h  
incubation  
washing

AGuIX 1 h  
incubation 
unwashing

AGuIX 1 h  
incubation  
unwashing

DEF 1.09 1.17 1.46 1.23 1.19

DEF 20 % 1.01 1.1 1.31 1.3 1.23

Sensitivity (SER4Gy) 1.05 1.19 1.41 1.2 1.12

p value 0.131 0.038 *** 0.009 0.011



Page 9 of 9Detappe et al. Cancer Nano  (2015) 6:4 

Hainfeld JF, Slatkin DN, Smilowitz H. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 
2004;49(18):N309–15.

Jain S, Coulter JA, Hounsell AR, Butterworth KT, McMahon SJ, Hyland WB, Muir MF, Dickson GR, Prise KM, Currell FJ, 
O’Sullivan JM, Hirst DG. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int 
J Radiat Oncol Biol Phys. 2011;79:531–9.

Jelveh S, Chithrani DB. Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Can-
cers (Basel). 2011;3(1):1081–110.

Jones BL, Krishnan S, Cho SH. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte 
Carlo calculations. Med Phys. 2010;37(7):3809–16.

Keall PJ, Barton M, Crozier S. The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol. 
2014;24(3):203–6.

Kumar R, Korideck H, Ngwa W, Berbeco RI, Makrigiorgos GM, Sridhar S. Third generation gold nanoplatform optimized for 
radiation therapy. Transl Cancer Res. 2013;2(4). doi.10.3978/j.issn.2218-676X.2013.07.02.

Kunjachan S, Jayapaul J, Mertens ME, Storm G, Kiessling F, Lammers T. Theranostic systems and strategies for monitoring 
nanomedicine-mediated drug targeting. Curr Pharm Biotechnol. 2012;13(4):609–22.

Lin Y, McMahon SJ, Scarpelli M, Paganetti H, Schuemann J. Comparing gold nano-particle enhanced radiotherapy 
with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Phys Med Biol. 
2014;59(24):7675–89.

Luchette M, Korideck H, Makrigiorgos M, Tillement O, Berbeco R. Radiation dose enhancement of gadolinium-based 
AGuIX nanoparticles on HeLa cells. Nanomedicine. 2014;10(8):1751–5.

Lux F, Mignot A, Mowat P, Louis C, Dufort S, Bernhard C, Denat F, Boschetti F, Brunet C, Antoine R, et al. Ultrasmall rigid 
particles as multimodal probes for medical applications. Angew Chem Int Ed Engl. 2011;50(51):12299–303.

McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, Schettino G, Dickson GR, Hounsell AR, O’Sullivan JM, 
et al. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep. 
2011;1:18.

McMahon SJ, Mendenhall MH, Jain S, Currell F. Radiotherapy in the presence of contrast agents: a general figure of merit 
and its application to gold nanoparticles. Phys Med Biol. 2008;53:5635–51.

Mignot A, Truillet C, Lux F, Sancey L, Louis C, Denat F, Boschetti F, Bocher L, Gloter A, Stéphan O, et al. A top-down 
synthesis route to ultrasmall multifunctional Gd-based silica nanoparticles for theranostic applications. Chemistry. 
2013;19(19):6122–36.

Mowat P, Mignot A, Rima W, Lux F, Tillement O, Roulin C, Dutreix M, Bechet D, Huger S, Humbert L, et al. In vitro radiosen-
sitizing effects of ultrasmall gadolinium based particles on tumour cells. J Nanosci Nanotechnol. 2011;11(9):7833–9.

Ngwa W, Kumar R, Sridhar S, Korideck H, Zygmanski P, Cormack RA, Berbeco R, Makrigiorgos M. Targeted radiotherapy 
with gold nanoparticles: current status and future perspectives. Nanomed (Lond). 2014;9(7):1063–82.

Parsons D, Robar JL, Sawkey D. A Monte Carlo investigation of low-Z target image quality generated in a linear accelera-
tor using Varian’s VirtuaLinac. Med Phys. 2014;41(2):021719.

Paul G, Prado Y, Dia N, Rivière E, Laurent S, Roch M, Elst LV, Muller RN, Sancey L, Perriat P, et al. MnII-containing coordina-
tion nanoparticles as highly efficient T1 contrast agents for magnetic resonance imaging. Chem Commun (Camb). 
2014;50(51):6740–3.

Porcel E, Tillement O, Lux F, Mowat P, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Li S, Lacombe S. Gadolinium-based 
nanoparticles to improve the hadrontherapy performances. Nanomedicine. 2014;10(8):1601–8.

Pradhan AK, Nahar SN, Montenegro M, Yu Y, Zhang HL, Sur C, Mrozik M, Pitzer RM. Resonant X-ray enhancement of the 
Auger effect in high-Z atoms, molecules, and nanoparticles: potential biomedical applications. J Phys Chem A. 
2009;113(45):12356–63.

Raaymakers BW, de Boer JC, Knox C, Crijns SP, Smit K, Stam MK, van den Bosch MR, Kok JG, Lagendijk JJ. Integrated mega-
voltage portal imaging with a 1.5 T MRI linac. Phys Med Biol. 2011;56(19):207–14.

Rima W, Sancey L, Aloy MT, Armandy E, Alcantara GB, Epicier T, Malchère A, Joly-Pottuz L, Mowat P, Lux F, et al. Internaliza-
tion pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles. Biomaterials. 2013;34(1):181–95.

Robar JL, Riccio SA, Martin MA. Tumour dose enhancement using modified megavoltage photon beams and contrast 
media. Phys Med Biol. 2002;47:2433–49.

Roeske JC, Nunez L, Hoggarth M, Labay E, Weichselbaum RR. Characterization of the theoretical radiation dose enhance-
ment from nanoparticles. Technol Cancer Res Treat. 2007;6(5):395–401.

Sancey L, Lux F, Kotb S, Roux S, Dufort S, Bianchi A, Crémillieux Y, Fries P, Coll JL, Rodriguez-Lafrasse C, et al. The use of 
theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol. 2014;87(1041):20140134.

Stefančíková L, Porcel E, Eustache P, Li S, Salado D, Marco S, Guerquin-Kern JL, Réfrégiers M, Tillement O, Lux F, et al. Cell 
localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells. Cancer 
Nanotechnol. 2014;5(1):6.

Tsiamas P, Sajo E, Cifter F, Theodorou K, Kappas C, Makrigiorgos M, Marcus K, Zygmanski P. Beam quality and dose pertur-
bation of 6 MV flattening-filter-free linac. Phys Med. 2014;30(1):47–56.

Tsiamas P, Seco J, Han Z, Bhagwat M, Maddox J, Kappas C, Theodorou K, Makrigiorgos M, Marcus K, Zygmanski P. A modi-
fication of flattening filter free linac for IMRT. Med Phys. 2011;38(5):2342–5239.

http://dx.doi.org/10.3978/j.issn.2218-676X.2013.07.02

	AGuIX nanoparticles as a promising platform for image-guided radiation therapy
	Abstract 
	Background
	Methods
	Cell culture
	AGuIX nanoparticles (Nano-H Inc., France)
	AGuIX uptake analysis with MRI and ICP-MS
	Localization of AGuIX within Panc1 cells
	Irradiation and setup
	Clonogenic assay
	Data analysis

	Results and discussion
	Uptake measurement
	Activation of the nanoparticles
	Dose enhancement effects

	Conclusion
	Authors’ contributions
	Received: 26 March 2015   Accepted: 25 August 2015References




