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Background
Cancer is a disease of the genome; one which is initiated by nanostructural perturba-
tions in the structure and function of DNA (e.g. somatic mutations, epigenetic modifica-
tions, etc.) and driven by the sequential accumulation of these perturbations (Hanahan 
and Weinberg 2011). The study of genomic aberrations and the identification of somatic 
mutations that drive a particular malignancy are, therefore, fundamental to the under-
standing of tumour biology. In addition, targeted therapies developed to inhibit the 
growth of a tumour are almost exclusively stratified to patients harbouring specific 
mutational profiles (Huang et  al. 2014). For example, cetuximab, an anti-epidermal 
growth factor receptor (EGFR) therapy, is only truly effective in patients with EGFR 
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amplifications (Yang et al. 2013). Tumour genotype information is needed by clinicians 
on a per patient basis.

Resistance to targeted therapies often emerges during a treatment regimen. Pre-exist-
ing resistant populations in a treatment-naïve tumour and induced-resistant populations 
acquired de novo during therapy have both been described as mechanisms of resistance. 
Bhang and colleagues have recently traced the emergence of erlotinib resistance in a 
model of lung adenocarcinoma, identifying a pre-existing MET-amplified clonal popu-
lation responsible for in vitro recurrence (Bhang et al. 2015). In a separate lung cancer 
model, Hata et al. showed that EGFRT790M mutations could be acquired during navito-
clax therapy and drive the inhibitor-resistant phenotype (Hata et al. 2016). Thus, includ-
ing temporal resolution in cancer genomic information will better inform treatment 
decisions.

Because of the clinical importance of tumour genomics, it is unsurprising that the 
sequencing of tumour biopsies prior to, and during, treatment regimens has become 
commonplace over the past several years. However, spatial heterogeneity within a 
tumour can lead to an under-representation of intratumour heterogeneity and an inac-
curate reporting of tumour genotypic information gleamed from punch biopsies (Sot-
toriva et al. 2013; de Bruin et al. 2014). Moreover, such biopsies are relatively invasive 
for solid tumours. Thus, many researchers and clinicians alike have turned to so-called 
‘liquid biopsies’ in an attempt to identify circulating mutant tumour DNA (ctDNA) in a 
patient’s blood (Newman et al. 2014; Ma et al. 2015). By deep molecular characterisa-
tion of this ctDNA across multiple sequential biopsies, it is hoped that researchers and 
oncologists will gain a better picture of cancer’s genetic makeup and how this evolves 
over time, without the considerations associated with spatial heterogeneity.

Typically, profiling of ctDNA is achieved through deep or targeted amplicon sequenc-
ing (Newman et  al. 2014). However, this approach is limited in terms of cost and 
throughput. For some of the more immediate clinical applications of ctDNA, such as 
tracking treatment response, temporal resolution of a tumour’s evolution may be as use-
ful as a deep understanding of its molecular drivers. Thus, many approaches for sequen-
tial monitoring of ctDNA have focussed on high-throughput techniques such as droplet 
and digital PCR to trace individual mutations in a patient’s blood over time (Zheng et al. 
2016). In this study, we sought to determine whether a panel of recurrently mutated 
genomic loci (hereafter ‘hotspots’) could be developed which would give suitable cover-
age over the entirety of the intertumour heterogeneity seen in human malignancies. As a 
test case, we focus on lung adenocarcinomas: a malignancy that is not well suited to typ-
ical punch biopsy techniques and that has substantial genomic heterogeneity amongst 
the clinical population.

Results
Lung adenocarcinomas are characterised by genomic aberrations in 23 driver genes

We first sought to profile the mutational landscape of lung adenocarcinomas, focussing 
on copy number aberrations (amplifications and deletions), single nucleotide variations 
(SNVs: non-synonymous, missense, and nonsense mutations), and frameshift mutations 
(truncating and inframe) across a panel of key driver genes. We identified a panel of 14 
oncogenes previously reported to be of key importance in lung adenocarcinoma (Fig. 1, 
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upper panel). Alterations in these genes are present in 82% of our test population of 230 
patients (TCGA) (Network 2014). The landscape here is dominated by missense muta-
tions in KRAS (present in >30% cases) and copy number gains primarily in EGFR, DDR2, 
BRAF, MET and PIK3CA. Importantly, targeted therapies have been developed for each 
of these driver genes. Aside from KRAS, SNVs are relatively evenly distributed across 
these driver oncogenes. Samples were sorted by overall mutational burden. Despite 
covering the vast majority of patients, our oncogene panel did not cover the bulk of a 
patients’ mutational burden, likely due to a high proportion of low-frequency ‘passenger’ 
mutations within the clinical population.

Next, we performed the same analysis on nine previously described tumour suppres-
sor genes frequently altered in lung adenocarcinoma (Fig.  1, lower panel). Unsurpris-
ingly, TP53 was the most frequently mutated tumour suppressor gene with >40% of 
patients harbouring a missense or truncating mutation. CDKN2A was the next most fre-
quently altered gene with >20% of patients carrying copy number losses. Altogether, the 
nine tumour suppressors profiled were altered in 61% of the 230 test cases.

In total, 93% of the 230 patients possessed at least one genomic aberration in our 
panel of 23 drivers, with >50% having alterations in two or more genes (a ‘depth’ of 
two per patient). Although the detection of copy number aberrations in ctDNA is 

Fig. 1  Waterfall plots of genetic alterations in The Cancer Genome Atlas lung adenocarcinoma dataset 
(n = 230). Each column represents an individual patient, colour-coded based on copy number aberration 
(amplification or deletion) and/or mutational state (truncating mutation, inframe mutation, missense muta-
tion) across profiled oncogenes and suppressors frequently altered in lung adenocarcinoma. Columns are 
sorted based on total mutational burden. In total, 93% of patients in the dataset are covered by one or more 
genetic aberration in the 23 genes profiled
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possible (Bettegowda et al. 2014), we elected to focus the rest of the analysis on SNVs 
and frameshift mutations, which can be detected with greater confidence across a wider 
range of techniques.

Hotspots in frequently mutated drivers are relatively rare

Most techniques aimed at detecting mutational events within a gene, such as digi-
tal droplet PCR or SNV array technologies, detect specific base-pair substitutions 
or frameshift mutations at a defined genomic locus rather than across the entire gene 
length. Despite the fact that over 30% of patients harbour a missense mutation in KRAS, 
many of these mutations could be missed without proper direction. Thus, it is important 
to identify specific hotspot loci within driver genes to create targeted panel.

We identified several such hotspot regions in recurrently mutated oncogenes (repre-
sentative examples KRAS and EGFR in Fig. 2a), For example, 73 of the 75 SNVs in KRAS 
resulted in an amino acid substitution at position 12 in the Ras domain. Notably, 17% of 
KRAS mutant lung adenocarcinomas harbour the G12D substitution (glycine to aspar-
tic acid at position 12) which confers a more invasive tumour phenotype and a reduced 
response to anti-EGFR targeted therapies (Gallegos Ruiz et al. 2007; DuPage et al. 2009). 
EGFR, the second most recurrently mutated oncogene in lung adenocarcinoma, showed 
a much more dispersed pattern of mutational events across its protein-coding domains. 
Missense mutations were preferentially localised to the phosphor-tyrosine kinase (Pki-
nase_Tyr) and eight resulted in an amino acid substitution from leucine to arginine at 
position 858 (L858R) (Network 2014; Zheng et al. 2016).

Profiling the recurrently mutated tumour suppressor genes, TP53 and ANK5 (Fig. 2a, 
lower panels) revealed a near even distribution of missense and truncating mutations. 
This supports the longstanding observation that tumour suppressor genes do not tend 
to have hotspot regions that confer a change in catalytic activity but rather tend to be 
truncated or deleted in late-stage malignancies. Indeed, the observation that tumour 
suppressors do not tend to have recurrent hotspot regions is the basis of the 20/20 rule 
often used to define tumour drivers (Vogelstein et al. 2013). Analysis of the tendency for 
mutations in our 23 driver genes to co-occur across multiple patients revealed the same 
pattern. Whilst a number of mutations do co-occur, the majority are mutually exclusive 
(Fig. 2b). Thus, it is likely that a panel of recurrently mutated regions in our 23 driver 
genes would not be enough to cover a substantial proportion of lung adenocarcinoma 
patients to a high depth.

Genome‑wide panels of recurrently mutated regions cover >80% patients

Given that the lung adenocarcinoma driver gene panel would not provide sufficient cov-
erage, we elected to identify recurrently mutated genomic loci in an unbiased, genome-
wide screen. Called somatic mutations were downloaded from the TCGA data portal in 
mutation annotation format (MAF) and unique loci were identified and scored based on 
frequency and distribution across the whole dataset (n = 519). The top 100 recurrently 
mutated loci in TCGA lung adenocarcinomas (Fig.  3a) had a median coverage of 3% 
(i.e. mutated in 3% of TCGA patients). Amongst these recurrent hotspots were two loci 
in the KRAS gene identified in Fig. 2, alongside novel mutations such as in IL32 (5.2% 
coverage) and RPSA (4.2% coverage). IL32 encodes a cytokine that is up-regulated in 



Page 5 of 11Clifford et al. Cancer Nano  (2016) 7:10 

0 100 189 aa

0

73

# 
M

ut
at

io
ns

KRAS
G12A/C/D/F/R/S/V/Y

Ras

0 200 400 600 800 1000 1210 aa

0

8

# 
M

ut
at

io
ns

EGFR
L858R

Rec.. Furin-like Rec.. GF_recep_IV Pkinase_Tyr

0 100 156 aa

0

5

# 
M

ut
at

io
ns

CDKN2A

Ank_5

0 100 200 300 393 aa

0

5

# 
M

ut
at

io
ns

TP53

R158L/P

P53.. P53 P53..

a

b

Fig. 2  a Lollipop plots showing the distribution of mutations (colour coded as Fig. 1) across the protein-cod-
ing regions of the two most commonly mutated oncogenes (KRAS and EGFR) and tumour suppressors (TP53 
and CDKN2A). b Volcano plot showing tendency towards mutual exclusivity or co-occurrence of mutations in 
the 23 genes profiled in Fig. 1
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Fig. 3  a 100 specific loci (“hotspots”) frequently mutated in the lung adenocarcinoma dataset (n = 519) 
ranked based on shared coverage across the dataset. Annotation is geneID_genomic-start-location. For exam-
ple, a hotspot region in KRAS starting at 25398285 is mutated in >15% of the TCGA dataset (this is the G12D 
region depicted in Fig. 2a). b Correlation between the size of a hotspot mutational panel and coverage in the 
TCGA dataset at specific depths [≥1, 2, 5 or 10 mutations per patient (left panel) and mean depth ± standard 
deviation (right panel)]. A panel size of 400 hotspots is highlighted for ease of comparison. The top 400 most 
frequently mutated regions in the dataset cover >75% patients at a depth of one mutation and >50% at a 
depth of two mutations (left panel); with a mean coverage of 7.9 per patient (right panel). c The composition 
of this 400 hotspot panel. The panel is dominated by SNVs and insertions (left panel) and is relatively balanced 
in terms of basepair substitution (right panel)
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lung adenocarcinomas and is correlated with lymph node metastasis (Sorrentino and Di 
Carlo 2009). RPSA encodes a ribosomal entry protein known to be up-regulated in lung 
adenocarcinomas but to an unknown end (Wu et al. 2013).

As our panel of 100 hotspots only covered 59% of TCGA patients, we examined the 
panel size needed to cover a majority of patients at a relatively high depth. Figure  3b 
shows the correlation between size of mutational panel and overall coverage of the 
dataset for four different representative depths. We start to see diminishing returns in 
coverage at a hotspot panel size of 1000 mutations. Therefore, covering the majority of 
patients at a depth greater than 10 mutations is unlikely. This highlights the intertumour 
heterogeneity seen between patients with lung adenocarcinoma (Zhang et  al. 2014). 
However, a 400-mutation panel gives a median coverage of 7.9 mutations per patient 
(Fig. 3b, right panel) with 82.8% patients covered by at least one mutation and 57.6% of 
patients covered by two or more mutations. The 400-mutation panel is dominated by 
insertions and SNVs (Fig. 3c, left) and is balanced in terms of specific base-pair changes 
(Fig. 3c, right). Although the 400-mutation panel does not cover the entirety of TCGA 
lung adenocarcinoma patients, its scale is feasible for a molecular diagnostics lab. Thus, 
probes for these 400 mutations could be optimised for off-the-shelf use in clinics—with 
the addition of more targeted probes for specific patients.

400 SNV hotspot panel covers >55% of 183 patients in Broad validation set
To validate our panel of 400 mutations from the TCGA dataset, we analysed the most 
frequent hotspot SNVs found in 183 patients sequenced by the Broad Institute (Imiel-
inski et al. 2012). The most frequent mutations in each dataset were relatively common, 
validating our approach. For example, a panel of 10 common hotspots from TCGA cov-
ered 32.7% of Broad patients at a depth of at least one mutation per patient (Fig. 4a). 
However, our panel of 400 hotspots from TCGA only covered 55% of patients in the vali-
dation dataset. Indeed, extending the panel size to the most common 10,000 hotspots in 
TCGA only allowed for coverage of 68% of the 183 Broad patients. These data suggest 
the need for further sequencing of lung adenocarcinoma patients to better understand 
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the prevalence of less-frequent mutations. Interestingly, there is a marked difference in 
the prevalence of the 10 most frequent mutations in TCGA between the two datasets 
(Fig. 4b). SNVs at IL32 (starting at 3119304), LOC100133050 (starting at 99715528) and 
RPSA (starting at 24010294) were not present at all in the Broad dataset despite high 
prevalence in TCGA. These observations could be a feature of different filtering tech-
niques in mutation calling in each study, or small sample size in the Broad dataset.

Discussion
Over the past several years, renewed effort in cancer research has yielded a myriad 
of molecular drivers of and contributors to tumour progression. Alongside the most 
often cited contributors, there are changes in stromal cell infiltrates (Kalluri and Zeis-
berg 2006), alterations in receptor prevalence or cell signalling (O’Neill et al. 2016), and 
nanotopographical changes to the cancer cell’s niche (Cassidy 2014; Cassidy et al. 2014). 
However, cancer is fundamentally a disease of the genome and only by understanding 
the patterns of clonal dynamics and evolution of genomic clones will the disease be fully 
understood.

As the need for accurate and temporally specific genomic information makes its 
way into the clinical setting, we must adopt new methodologies of profiling a tumour’s 
genome in a non-invasive and low-cost manner. Analysis of ctDNA has shown much 
promise in this regard, being used in many pioneering studies for monitoring treatment 
response, predicting relapse, and profiling intratumour heterogeneity (Bettegowda et al. 
2014; Ma et al. 2015; Zheng et al. 2016). However, analysis of ctDNA is often initially 
based on targeted sequencing, which is both expensive and time consuming. Typically, 
specific primers can be designed after initial sequencing and ctDNA levels in the blood 
can be followed by less-demanding techniques, such as droplet digital PCR (Zheng et al. 
2016). In this study, we set out to identify a panel of recurrent mutations in lung adeno-
carcinoma that would cover the majority of patients. Primers could then be designed and 
optimised for this panel ready for ‘off-the-shelf ’ use in molecular diagnostic laboratories.

Lung adenocarcinoma is particularly heterogeneous and, even with a panel of 400 
recurrent hotspots, coverage of 1× was only possible in ~80% of patients (Fig. 3b). This 
is particularly problematic as many of these mutations are likely passengers and there-
fore not necessarily clonal to the whole tumour. Thus, with a coverage of 1× we could 
not be sure that ctDNA levels were truly representative of the tumour bulk as a whole. 
However, this panel could be substantially refined in the future given the prevalence 
of recurrent copy number aberrations in driver genes seen in Fig. 1, and the recurrent 
promoter methylation in lung cancer (Belinsky 2004) which is recapitulated in ctDNA 
(Mishima et  al. 2015; Warton et  al. 2016). Care should also be taken to include likely 
‘truncal’ genomic aberrations common to the tumour as a whole and not restricted to 
minor subclonal populations. Differences in TCGA and Broad datasets (Fig.  4) reflect 
tumour heterogeneity in lung adenocarcinomas and suggest that recurrently methylated 
CpG sites may also require inclusion in such panels. Although if such efforts relied on 
bisulfide conversion of CpG islands, we may see a loss of resolution for “C to T” SNVs at 
these sites.

The need for rapid identification of ctDNA in the time- and cost-constrained envi-
ronment of clinical oncology is clear, and lung adenocarcinoma is of particular interest 
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due to the difficulty in collecting recurrent solid biopsies. Our study aimed to identify 
a targeted hotspot panel for lung adenocarcinoma. We described mutation patterns 
in known genetic drivers of lung adenocarcinoma and profiled genome-wide recur-
rently mutated loci. Moreover, this work has identified several novel recurrent muta-
tions in genes not typically associated with lung adenocarcinoma, which are each 
present in a significant subset of TCGA lung adenocarcinoma patients (Fig. 3a, e.g. IL32, 
LOC650368, HSD17B7P2 and RPSA). Whilst our panels were informative, they did not 
provide sufficient coverage and depth to be clinically useful. Future work should refine 
our initial panel to include recurrent copy number aberrations and hyper-methylated 
promoter regions.

Conclusions
ctDNA shows great promise for low-invasive serial monitoring of tumour burden and 
heterogeneity through treatment cycles. However, current ctDNA detection techniques 
rely on next-generation sequencing which is time consuming, expensive and requires 
bioinformatics expertise and access to specialist sequencing facilities. Tracing ctDNA 
through serial biopsy is better suited to high-throughput and low-cost techniques such 
as digital droplet PCR. In this scenario, a molecular diagnostics laboratory would first 
deeply sequence a patients’ ctDNA and then design primers for subsequent digital 
droplet PCR. In this study, we sought to define a panel of common hotspot mutations 
in lung adenocarcinoma to allow molecular diagnostic laboratories to design and opti-
mise primers to cover the majority of patients. Although our 400-hotspot panel showed 
good coverage and depth in the TCGA dataset, all patients could not be covered. The 
difficulties in finding hotspots common to all patients reflect the profound intertumour 
heterogeneity seen in all cancers (Cassidy and Bruna 2016) and in particular lung ade-
nocarcinomas. Further work is needed to optimise the panel design prior to use in the 
clinic, alongside continued collection of whole genome sequencing data from lung ade-
nocarcinoma patients. Beyond mutations, efforts should be made to include recurrently 
methylated CpGs and copy number aberrations in such panels.

Methods
Primary mutational analysis was carried out using cBioPortal (cbioportal.org) (Cer-
ami et al. 2012; Gao et al. 2013). Lollipops were constructed using the R package ‘lol-
lipops’ (github.com/pbnjay/lollipops), with pathway data obtained from Cytoscape 3.2.1 
(cytoscape.org) (Lopes et al. 2010). Called somatic mutations (SNVs) and clinical meta-
data were downloaded from the TCGA Data Portal (tcga-data.nci.nih.gov) (Network 
2014). Validation dataset from the Broad Institute was downloaded from dbGAP (Imie-
linski et al. 2012). Mutation annotation format (MAF) files were manipulated in R Stu-
dio (Mac) 0.99.484 (rstudio.com). Combined data were analysed in Microsoft Excel (Mac 
14.4.3) and R Studio with results plotted in GraphPad Prism 6 (Mac) and R (3.3.1 Unix; 
r-project.org).

Abbreviations
ctDNA: circulating tumour DNA; DNA: deoxyribonucleic acid; EGFR: epidermal growth factor receptor; MAF: mutation 
annotation format; MET: hepatocyte growth factor receptor; PCR: polymerase chain reaction; SNV: single nucleotide vari-
ation; TCGA: the cancer genome atlas.
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