Gurney JG, Kadan-Lottick N: Brain and other central nervous system tumors: rates, trends, and epidemiology. Curr Opin Oncol 2001, 13: 160-166. 10.1097/00001622-200105000-00005
Article
Google Scholar
Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, Hill RP, Jaffray DA: Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 2010, 173: 719-728. 10.1667/RR1984.1
Article
Google Scholar
Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM: Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 2008, 60: 977-985. 10.1211/jpp.60.8.0005
Article
Google Scholar
Hainfeld JF, Slatkin DN, Smilowitz HM: The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004, 49: N309-N315. 10.1088/0031-9155/49/18/N03
Article
Google Scholar
Jain S, Coulter JA, Hounsell AR, Butterworth KT, McMahon SJ, Hyland WB, Muir MF, Dickson GR, Prise KM, Currell FJ, O'Sullivan JM, Hirst DG: Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys 2011, 79: 531-539. 10.1016/j.ijrobp.2010.08.044
Article
Google Scholar
Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol J-P, Reilly RM: Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res Treat 2013, 137: 81-91. 10.1007/s10549-012-2338-4
Article
Google Scholar
Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM: Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 2006, 79: 248-253. 10.1259/bjr/13169882
Article
Google Scholar
Lim Z-ZJ, Li J-EJ, Ng C-T, Yung L-YL, Bay B-H: Gold nanoparticles in cancer therapy. Acta Pharmacol Sin 2011, 32: 983-990. 10.1038/aps.2011.82
Article
Google Scholar
Powell AC, Paciotti GF, Libutti SK: Colloidal gold: a novel nanoparticle for targeted cancer therapeutics. Methods Mol Biol 2010, 624: 375-384. 10.1007/978-1-60761-609-2_25
Article
Google Scholar
Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP: Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 2013, 10: 831-847. 10.1021/mp3005885
Article
Google Scholar
Butterworth KT, McMahon SJ, Currell FJ, Prise KM: Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 2012, 4: 4830-4838. 10.1039/c2nr31227a
Article
Google Scholar
Porcel E, Li S, Usami N, Remita H, Furusawa Y, Kobayashi K, Le Sech C, Lacombe S: Nano-Sensitization Under Gamma Rays and Fast ion Radiation. 1st Nano-Ibct Conference 2011 - Radiation Damage of Biomolecular Systems: Nanoscale Insights into Ion Beam Cancer Therapy. Journal of Physics: Conference Series 2011, 373. [http://iopscience.iop.org/1742-6596/373/1/012006] http://iopscience.iop.org/1742-6596/373/1/012006
Google Scholar
Le Duc G, Roux S, Tillement O, Perriat P, Billotey C, Mandon C, Mutelet B, Alric C, Janier M, Loui C (2007) Radio-Sensibilisants a base de Nanoparticules Hybrides d’Oxyde de Lanthanide et Methode pour Augmenter l’Efficacite Therapeutique des Radiations par Utilisation de Nanoparticules d’Oxyde de Lanthanides. French Patent 07.58348
Sharma P, Brown SC, Walter G, Santra S, Scott E, Ichikawa H, Fukumori Y, Moudgil BM: Gd nanoparticulates: from magnetic resonance imaging to neutron capture therapy. Adv Powder Technol 2007, 18: 663-698. 10.1163/156855207782515030
Article
Google Scholar
Bridot JL, Faure AC, Laurent S, Riviere C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Elst LV, Muller R, Roux S, Perriat P, Tillement O: Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging. J Am Chem Soc 2007, 129: 5076-5084. 10.1021/ja068356j
Article
Google Scholar
Yim H, Seo S, Na K: MRI contrast agent-based multifunctional materials: diagnosis and therapy. J Nanomater 2011, 2011: 1-11. 10.1155/2011/747196
Article
Google Scholar
Lux F, Mignot A, Mowat P, Louis C, Dufort S, Bernhard C, Denat F, Boschetti F, Brunet C, Antoine R, Dugourd P, Laurent S, Vander Elst L, Muller R, Sancey L, Josserand V, Coll JL, Stupar V, Barbier E, Rémy C, Broisat A, Ghezzi C, Le Duc G, Roux S, Perriat P, Tillement O: Ultrasmall rigid particles as multimodal probes for medical applications. Angew Chem Int Ed Engl 2011, 50: 12299-12303. 10.1002/anie.201104104
Article
Google Scholar
Roux S, Tillement O, Billotey C, Coll J-L, Le Duc G, Marquette CA, Perriat P: Multifunctional nanoparticles: from the detection of biomolecules to the therapy. Int J Nanotechnol 2010, 7: 781-801. 10.1504/IJNT.2010.031744
Article
Google Scholar
Bianchi A, Dufort S, Lux F, Courtois A, Tillement O, Coll J-L, Crémillieux Y: Quantitative biodistribution and pharmacokinetics of multimodal gadolinium-based nanoparticles for lungs using ultrashort TE MRI. MAGMA 2013,27(4):303-316. doi:10.1007/s10334-013-0412-5 10.1007/s10334-013-0412-5
Article
Google Scholar
Mignot A, Truillet C, Lux F, Sancey L, Louis C, Denat F, Boschetti F, Bocher L, Gloter A, Stephan O, Antoine R, Dugourd P, Luneau D, Novitchi G, Figueiredo LC, de Morais PC, Bonneviot L, Albela B, Ribot F, Van Lokeren L, D°Champs-Olivier I, Chuburu F, Lemercier G, Villiers C, Marche PN, Le Duc G, Roux S, Tillement O, Perriat P: A top-down synthesis route to ultrasmall multifunctional Gd-based silica nanoparticles for theranostic applications. Chem Eur J 2013, 19: 6122-6136. 10.1002/chem.201203003
Article
Google Scholar
Le Duc G, Miladi I, Alric C, Mowat P, Bräuer-Krisch E, Bouchet A, Khalil E, Billotey C, Janier M, Lux F, Epicier T, Perriat P, Roux S, Tillement O: Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 2011, 5: 9566-9574. 10.1021/nn202797h
Article
Google Scholar
Mowat P, Mignot A, Rima W, Lux F, Tillement O, Roulin C, Dutreix M, Bechet D, Huger S, Humbert L, Barberi-Heyob M, Aloy MT, Armandy E, Rodriguez-Lafrasse C, Le Duc G, Roux S, Perriat P: In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells. J Nanosci Nanotechnol 2011,11(9):7833-7839. 10.1166/jnn.2011.4725
Article
Google Scholar
Porcel E, Tillement O, Lux F, P M, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Li S, Lacombe S (2014) Gadolinium-based nanoparticles to improve the hadrontherapy performances. Nanomedicine, in press
Krpetic Z, Nativo P, See V, Prior IA, Brust M, Volk M: Inflicting controlled nonthermal damage to subcellular structures by laser-activated gold nanoparticles. Nano Lett 2010, 10: 4549-4554. 10.1021/nl103142t
Article
Google Scholar
Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Lacombe S: Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 2010, 21: 7. 10.1088/0957-4484/21/8/085103
Article
Google Scholar
Chang M-Y, Shiau A-L, Chen Y-H, Chang C-J, Chen HHW, Wu C-L: Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci 2008, 99: 1479-1484. 10.1111/j.1349-7006.2008.00827.x
Article
Google Scholar
Kong T, Zeng J, Wang X, Yang X, Yang J, McQuarrie S, McEwan A, Roa W, Chen J, Xing JZ: Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small 2008, 4: 1537-1543. 10.1002/smll.200700794
Article
Google Scholar
Usami N, Furusawa Y, Kobayashi K, Lacombe S, Reynaud-Angelin A, Sage E, Wu T-D, Croisy A, Guerquin-Kern JL, Le Sech C: Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions. Int J Radiat Biol 2008, 84: 603-611. 10.1080/09553000802199846
Article
Google Scholar
Zhang X, Xing JZ, Chen J, Ko L, Amanie J, Gulavita S, Pervez N, Yee D, Moore R, Roa W: Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin Invest Med 2008, 31: E160-E167.
Google Scholar
Rima W, Sancey L, Aloy M-T, Armandy E, Alcantara GB, Epicier T, Malchere A, Joly-Pottuz L, Mowat P, Lux F, Tillement O, Burdin B, Rivoire A, Boulé C, Anselme-Bertrand I, Pourchez J, Cottier M, Roux S, Rodriguez-Lafrasse C, Perriat P: Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles. Biomaterials 2013, 34: 181-195. 10.1016/j.biomaterials.2012.09.029
Article
Google Scholar
Glauert AM, Lewis PR: Biological Specimen Preparation for Transmission Electron Microscopy. In Practical Methods in Electron Microscopy. Volume 17. Edited by: Audrey M, Glauert E. Portland Press, London; 1998:326.
Google Scholar
Hoetzer B, Medintz IL, Hildebrandt N: Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications. Small 2012, 8: 2297-2326. 10.1002/smll.201200109
Article
Google Scholar
Jiang J, Oberdorster G, Biswas P: Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanoparticle Res 2009, 11: 77-89. 10.1007/s11051-008-9446-4
Article
Google Scholar
Pietzonka P, Rothen-Rutishauser B, Langguth P, Wunderli-Allenspach H, Walter E, Merkle HP: Transfer of lipophilic markers from PLGA and polystyrene nanoparticles to Caco-2 monolayers mimics particle uptake. Pharm Res 2002, 19: 595-601. 10.1023/A:1015393710253
Article
Google Scholar
Salvati A, Aberg C, dos Santos T, Varela J, Pinto P, Lynch I, Dawson KA: Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics. Nanomedicine 2011, 7: 818-826. 10.1016/j.nano.2011.03.005
Article
Google Scholar
Kascakova S, Maigre L, Chevalier J, Refregiers M, Pages J-M: Antibiotic transport in resistant bacteria: synchrotron UV fluorescence microscopy to determine antibiotic accumulation with single cell resolution. PLoS One 2012,7(6):e38624. doi:10.1371/journal.pone.0038624 10.1371/journal.pone.0038624
Article
Google Scholar
Fizet J, Riviere C, Bridot JL, Charvet N, Louis C, Billotey C, Raccurt M, Morel G, Roux S, Perriat P, Tillement O: Multi-luminescent hybrid gadolinium oxide nanoparticles as potential cell labeling. J Nanosci Nanotechnol 2009, 9: 5717-5725. 10.1166/jnn.2009.1237
Article
Google Scholar
Louis C, Bazzi R, Marquette CA, Bridot JL, Roux S, Ledoux G, Mercier B, Blum L, Perriat P, Tillement O: Nanosized hybrid particles with double luminescence for biological labeling. Chem Mater 2005, 17: 1673-1682. 10.1021/cm0480162
Article
Google Scholar
Wagnieres GA, Star WM, Wilson BC: In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 1998, 68: 603-632. 10.1111/j.1751-1097.1998.tb02521.x
Article
Google Scholar
Huang C-Y, Ger T-R, Wei Z-H, Lai M-F: Compare analysis for the nanotoxicity effects of different amounts of endocytic iron oxide nanoparticles at single cell level. PLoS One 2014,9(5):e96550. doi:10.1371/journal.pone.0096550 10.1371/journal.pone.0096550
Article
Google Scholar
Huotari J, Helenius A: Endosome maturation. Embo J 2011, 30: 3481-3500. 10.1038/emboj.2011.286
Article
Google Scholar
Kerr MC, Teasdale RD: Defining macropinocytosis. Traffic 2009, 10: 364-371. 10.1111/j.1600-0854.2009.00878.x
Article
Google Scholar
Xu P, Gullotti E, Tong L, Highley CB, Errabelli DR, Hasan T, Cheng J-X, Kohane DS, Yeo Y: Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited. Mol Pharm 2009, 6: 190-201. 10.1021/mp800137z
Article
Google Scholar
Conner SD, Schmid SL: Regulated portals of entry into the cell. Nature 2003, 422: 37-44. 10.1038/nature01451
Article
Google Scholar
Shikata F, Tokumitsu H, Ichikawa H, Fukumori Y: In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm 2002, 53: 57-63. 10.1016/S0939-6411(01)00198-9
Article
Google Scholar
Tseng C-L, Shih IL, Stobinski L, Lin F-H: Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials 2010, 31: 5427-5435. 10.1016/j.biomaterials.2010.03.049
Article
Google Scholar
Liu K-K, Wang C-C, Cheng C-L, Chao J-I: Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 2009, 30: 4249-4259. 10.1016/j.biomaterials.2009.04.056
Article
Google Scholar
Thurn KT, Arora H, Paunesku T, Wu A, Brown EMB, Doty C, Kremer J, Woloschak G: Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3 M cells. Nanomedicine 2011, 7: 123-130. 10.1016/j.nano.2010.09.004
Article
Google Scholar
Bolte S, Cordelieres FP: A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 2006, 224: 213-232. 10.1111/j.1365-2818.2006.01706.x
Article
Google Scholar
Manders EMM, Stap J, Brakenhoff GJ, Vandriel R, Aten JA: Dynamics of 3-dimensional replication patterns during the S-phase, analyzed by double labeling of DNA and confocal microscopy. J Cell Sci 1992, 103: 857-862.
Google Scholar
Zinchuk V, Zinchuk O: Quantitative colocalization analysis of confocal fluorescence microscopy images. Curr Protoc Cell Biol 2008, Chapter 4: Unit 4.19-Unit 14.19.
Google Scholar
Neun BW, Stern ST: Monitoring lysosomal activity in nanoparticle-treated cells. Methods Mol Biol 2011, 697: 207-212. 10.1007/978-1-60327-198-1_22
Article
Google Scholar
Bexiga MG, Varela JA, Wang F, Fenaroli F, Salvati A, Lynch I, Simpson JC, Dawson KA: Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology 2011, 5: 557-567. 10.3109/17435390.2010.539713
Article
Google Scholar
Lesniak A, Campbell A, Monopoli MP, Lynch I, Salvati A, Dawson KA: Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 2010, 31: 9511-9518. 10.1016/j.biomaterials.2010.09.049
Article
Google Scholar
Shapero K, Fenaroli F, Lynch I, Cottell DC, Salvati A, Dawson KA: Time and space resolved uptake study of silica nanoparticles by human cells. Mol Biosyst 2011, 7: 371-378. 10.1039/c0mb00109k
Article
Google Scholar
Shi H, He X, Yuan Y, Wang K, Liu D: Nanoparticle-based biocompatible and long-life marker for lysosome labeling and tracking. Anal Chem 2010, 82: 2213-2220. 10.1021/ac902417s
Article
Google Scholar
Dutreix J, Wanbersie A, Tubiana M: Introduction to Radiobiology. Taylor & Francis, London, UK; 1990.
Google Scholar
Sancey L, Lux F, Kotb S, Roux S, Dufort S, Bianchi A, Cremilleux Y, Fries P, Coll JL, Rodriguez-Lafrasse C, Janier M, Dutreix M, Barberi-Heyob M, Boschetti F, Denat F, Louis C, Porcel E, Lacombe S, Le Duc G, Deutsch E, Perfettini JL, Detappe A, Verry C, Berbecco R, Butterworth K, McMahon S, Prise K, Perriat P, Tillement O (2004) The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol, in press