Lange CFA: Über die Ausflockung kolloidalen Goldes durch Zerebrospinalflüssigket bei luetischen Affektionen des Zentralnervensystems. Zeitschrift für Chemotherapie und verwandte Gebiete 1913, 1: 44-78.
Google Scholar
Ahmad MZ, Akhter S, Rahman Z, Akhter S, Anwar M, Mallik N, Ahmad FJ: Nanometric gold in cancer nanotechnology: current status and future prospect. J Pharm Pharmacol 2013, 65: 634-651. 10.1111/jphp.12017
Article
Google Scholar
Boisselier E, Astruc D: Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 2009, 38: 1759-1782. 10.1039/b806051g
Article
Google Scholar
Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA: The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 2012, 41: 2740-2779. 10.1039/c1cs15237h
Article
Google Scholar
Kumar D, Saini N, Jain N, Sareen R, Pandit V: Gold nanoparticles: an era in bionanotechnology. Expert Opin Drug Deliv 2013, 10: 397-409. 10.1517/17425247.2013.749854
Article
Google Scholar
Cobley CM, Chen J, Cho EC, Wang LV, Xia Y: Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 2011, 40: 44-56. 10.1039/b821763g
Article
Google Scholar
Jiao PF, Zhou HY, Chen LX, Yan B: Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy. Curr Med Chem 2011, 18: 2086-2102. 10.2174/092986711795656199
Article
Google Scholar
Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP: Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 2013, 10: 831-847. 10.1021/mp3005885
Article
Google Scholar
Lynch I, Dawson KA: Protein-nanoparticle interactions. Nano Today 2008, 3: 40-47. 10.1016/S1748-0132(08)70014-8
Article
Google Scholar
Rahman M, Laurent S, Tawil N, Yahia L, Mahmoudi M: Protein-Nanoparticle Interactions. Springer, Berlin Heidelberg; 2013.
Book
Google Scholar
Saptarshi SR, Duschl A, Lopata AL: Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 2013, 11: 26. 10.1186/1477-3155-11-26
Article
Google Scholar
Walkey CD, Chan WCW: Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 2012, 41: 2780-2799. 10.1039/c1cs15233e
Article
Google Scholar
Lin PC, Lin S, Wang PC, Sridhar R: Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 2014, 32: 711-726. 10.1016/j.biotechadv.2013.11.006
Article
Google Scholar
Herrera J, Sakulchaicharoen N: Microscopic And Spectroscopic Characterization Of Nanoparticles. In Nanoparticulate Drug Delivery Systems. Edited by: Pathak Y, Thassu D. Informa Healthcare, New York; 2009:237-249.
Google Scholar
Klang V, Valenta C, Matsko NB: Electron microscopy of pharmaceutical systems. Micron 2013, 44: 45-74. 10.1016/j.micron.2012.07.008
Article
Google Scholar
McDonald KL: Out with the old and in with the new: rapid specimen preparation procedures for electron microscopy of sectioned biological material. Protoplasma 2014, 251: 429-448. 10.1007/s00709-013-0575-y
Article
Google Scholar
Pluchery O: Optical Properties of Gold Nanoparticles. In Gold Nanoparticles for Physics, Chemistry and Biology. Edited by: Louis C, Pluchery O. Imperial College Press, London; 2012:43-73. 10.1142/9781848168077_0003
Chapter
Google Scholar
Haiss W, Thanh NTK, Aveyard J, Fernig DG: Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem 2007, 79: 4215-4221. 10.1021/ac0702084
Article
Google Scholar
Brun E, Sanche L, Sicard-Roselli C: Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf B: Biointerfaces 2009, 72: 128-134. 10.1016/j.colsurfb.2009.03.025
Article
Google Scholar
He YQ, Liu SP, Kong L, Liu ZF: A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim Acta, Pt A: Mol Spectrosc 2005, 61: 2861-2866. 10.1016/j.saa.2004.10.035
Article
Google Scholar
Link S, El-Sayed MA: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 1999, 103: 4212-4217. 10.1021/jp984796o
Article
Google Scholar
Nath N, Chilkoti A: Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 2004, 76: 5370-5378. 10.1021/ac049741z
Article
Google Scholar
Brar SK, Verma M: Measurement of nanoparticles by light-scattering techniques. Trac-Trend Anal Chem 2011, 30: 4-17. 10.1016/j.trac.2010.08.008
Article
Google Scholar
Roebben G, Ramirez-Garcia S, Hackley VA, Roesslein M, Klaessig F, Kestens V, Lynch I, Garner CM, Rawle A, Elder A, Colvin VL, Kreyling W, Krug HF, Lewicka ZA, McNeil S, Nel A, Patri A, Wick P, Wiesner M, Xia T, Oberdorster G, Dawson KA: Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. J Nanopart Res 2011, 13: 2675-2687. 10.1007/s11051-011-0423-y
Article
Google Scholar
Filipe V, Hawe A, Jiskoot W: Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 2010, 27: 796-810. 10.1007/s11095-010-0073-2
Article
Google Scholar
Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G, Capracotta S, Magdolenova Z, Horev-Azaria L, Dybowska A, Cooke L, Haase A, Contal S, Mano S, Vennemann A, Sauvain JJ, Staunton KC, Anguissola S, Luch A, Dusinska M, Korenstein R, Gutleb AC, Wiemann M, Prina-Mello A, Riediker M, Wick P: Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res 2013,15(12): doi 10.1007/S11051-013-2101-8
Krpetic Z, Davidson AM, Volk M, Levy R, Brust M, Cooper DL: High-resolution sizing of monolayer-protected gold clusters by differential centrifugal sedimentation. ACS Nano 2013, 7: 8881-8890. 10.1021/nn403350v
Article
Google Scholar
Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA: Physical-chemical aspects of protein corona: relevance to in Vitro and in Vivo biological impacts of nanoparticles. J Am Chem Soc 2011, 133: 2525-2534. 10.1021/ja107583h
Article
Google Scholar
Jedlovszky-Hajdu A, Bombelli FB, Monopoli MP, Tombacz E, Dawson KA: Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo . Langmuir 2012, 28: 14983-14991. 10.1021/la302446h
Article
Google Scholar
Hinterwirth H, Wiedmer SK, Moilanen M, Lehner A, Allmaier G, Waitz T, Lindner W, Lammerhofer M: Comparative method evaluation for size and size-distribution analysis of gold nanoparticles. J Sep Sci 2013, 36: 2952-2961. 10.1002/jssc.201300460
Article
Google Scholar
Khlebtsov BN, Khlebtsov NG: On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J 2011, 73: 118-127. 10.1134/S1061933X11010078
Article
Google Scholar
Schaffler M, Semmler-Behnke M, Sarioglu H, Takenaka S, Wenk A, Schleh C, Hauck SM, Johnston BD, Kreyling WG: Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles. Nanotechnology 2013, 24: 265103. 10.1088/0957-4484/24/26/265103
Article
Google Scholar
Sabuncu AC, Grubbs J, Qian S, Abdel-Fattah TM, Stacey MW, Beskok A: Probing nanoparticle interactions in cell culture media. Colloids Surf B: Biointerfaces 2012, 95: 96-102. 10.1016/j.colsurfb.2012.02.022
Article
Google Scholar
Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP: Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 2010, 4: 7481-7491. 10.1021/nn101557e
Article
Google Scholar
Wang G, Papasani MR, Cheguru P, Hrdlicka PJ, Hill RA: Gold-peptide nanoconjugate cellular uptake is modulated by serum proteins. Nanomed Nanotechnol Biol Med 2012, 8: 822-832. 10.1016/j.nano.2011.10.007
Article
Google Scholar
Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V: Time evolution of the nanoparticle protein corona. ACS Nano 2010, 4: 3623-3632. 10.1021/nn901372t
Article
Google Scholar
Mahmoudi M, Abdelmonem AM, Behzadi S, Clement JH, Dutz S, Ejtehadi MR, Hartmann R, Kantner K, Linne U, Maffre P, Metzler S, Moghadam MK, Pfeiffer C, Rezaei M, Ruiz-Lozano P, Serpooshan V, Shokrgozar MA, Nienhaus GU, Parak WJ: Temperature: the 'ignored' factor at the nanobio interface. ACS Nano 2013, 7: 6555-6562. 10.1021/nn305337c
Article
Google Scholar
Walkey CD, Olsen JB, Guo H, Emili A, Chan WC: Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 2012, 134: 2139-2147. 10.1021/ja2084338
Article
Google Scholar
Dobrovolskaia MA, Neun BW, Man S, Ye X, Hansen M, Patri AK, Crist RM, McNeil SE: Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. Nanomedicine 2014, doi:10.1016/j.nano.2014.01.009
Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE: Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 2009, 5: 106-117. 10.1016/j.nano.2008.08.001
Article
Google Scholar
Walkey CD, Olsen JB, Guo HB, Emili A, Chan W: Nanoparticle size and PEG grafting density control protein adsorption and cellular interactions in a physiological environment. Abstr Pap Am Chem S 2012, 243: WOS:000324475104157
Walkey CD, Olsen JB, Song F, Liu R, Guo H, Olsen DW, Cohen Y, Emili A, Chan WC: Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 2014, 8: 2439-2455. 10.1021/nn406018q
Article
Google Scholar
Pozzi D, Colapicchioni V, Caracciolo G, Piovesana S, Capriotti AL, Palchetti S, De Grossi S, Riccioli A, Amenitsch H, Lagana A: Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale 2014, 6: 2782-2792. 10.1039/c3nr05559k
Article
Google Scholar
Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH: Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 2011, 5: 7155-7167. 10.1021/nn201950e
Article
Google Scholar
Sisco PN, Wilson CG, Chernak D, Clark JC, Grzincic EM, Ako-Asare K, Goldsmith EC, Murphy CJ: Adsorption of cellular proteins to polyelectrolyte-functionalized gold nanorods: a mechanism for nanoparticle regulation of cell phenotype? PLoS one 2014, 9: doi 10.1371/journal.pone.0086670 10.1371/journal.pone.0086670
Albanese A, Walkey CD, Olsen JB, Guo H, Emili A, Chan W: Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano 2014, 8: 5515-5526. 10.1021/nn4061012
Article
Google Scholar
Patel PC, Giljohann DA, Daniel WL, Zheng D, Prigodich AE, Mirkin CA: Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconj Chem 2010, 21: 2250-2256. 10.1021/bc1002423
Article
Google Scholar
Jiang X, Weise S, Hafner M, Rocker C, Zhang F, Parak WJ, Nienhaus GU: Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J R Soc Lond Interface 2010,7(Suppl 1):S5-S13. 10.1098/rsif.2009.0272.focus
Article
Google Scholar
Treuel L, Brandholt S, Maffre P, Wiegele S, Shang L, Nienhaus GU: Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions. ACS Nano 2014, 8: 503-513. 10.1021/nn405019v
Article
Google Scholar
Lesniak A, Fenaroli F, Monopoli MP, Aberg C, Dawson KA, Salvati A: Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 2012, 6: 5845-5857. 10.1021/nn300223w
Article
Google Scholar
Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C: Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 2013, 135: 1438-1444. 10.1021/ja309812z
Article
Google Scholar
Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, Nienhaus GU, Musyanovych A, Mailander V, Landfester K, Simmet T: Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 2011, 5: 1657-1669. 10.1021/nn2000756
Article
Google Scholar
Peng Q, Zhang S, Yang Q, Zhang T, Wei XQ, Jiang L, Zhang CL, Chen QM, Zhang ZR, Lin YF: Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials 2013, 34: 8521-8530. 10.1016/j.biomaterials.2013.07.102
Article
Google Scholar
Lesniak A, Campbell A, Monopoli MP, Lynch I, Salvati A, Dawson KA: Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 2010, 31: 9511-9518. 10.1016/j.biomaterials.2010.09.049
Article
Google Scholar
Yan Y, Gause KT, Kamphuis MM, Ang CS, O'Brien-Simpson NM, Lenzo JC, Reynolds EC, Nice EC, Caruso F: Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano 2013, 7: 10960-10970. 10.1021/nn404481f
Article
Google Scholar
Krais A, Wortmann L, Hermanns L, Feliu N, Vahter M, Stucky S, Mathur S, Fadeel B: Targeted uptake of folic acid-functionalized iron oxide nanoparticles by ovarian cancer cells in the presence but not in the absence of serum. Nanomed Nanotechnol Biol Med 2014. doi:10.1016/j.nano.2014.01.006
Prapainop K, Witter DP, Wentworth P: A chemical approach for cell-specific targeting of nanomaterials: small-molecule-initiated misfolding of nanoparticle corona proteins. J Am Chem Soc 2012, 134: 4100-4103. 10.1021/ja300537u
Article
Google Scholar
Caracciolo G, Cardarelli F, Pozzi D, Salomone F, Maccari G, Bardi G, Capriotti AL, Cavaliere C, Papi M, Lagana A: Selective targeting capability acquired with a protein corona adsorbed on the surface of 1,2-dioleoyl-3-trimethylammonium propane/DNA nanoparticles. ACS Appl Mater Interfaces 2013, 5: 13171-13179. 10.1021/am404171h
Article
Google Scholar
Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, Chen C: Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci U S A 2011, 108: 16968-16973. 10.1073/pnas.1105270108
Article
Google Scholar
Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q: Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 2011, 5: 3693-3700. 10.1021/nn200021j
Article
Google Scholar
Wang F, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, Dawson KA: The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine 2013, 9: 1159-1168. 10.1016/j.nano.2013.04.010
Article
Google Scholar
Wang L, Li J, Pan J, Jiang X, Ji Y, Li Y, Qu Y, Zhao Y, Wu X, Chen C: Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J Am Chem Soc 2013, 135: 17359-17368. 10.1021/ja406924v
Article
Google Scholar
Doorley GW, Payne CK: Nanoparticles act as protein carriers during cellular internalization. Chem Commun (Camb) 2012, 48: 2961-2963. 10.1039/c2cc16937a
Article
Google Scholar
Speshock JL, Braydich-Stolle LK, Szymanski ER, Hussain SM: Silver and gold nanoparticles alter cathepsin activity in vitro . Nanoscale Res Lett 2011, 6: doi 10.1007/S11671-010-9746-3
Vauthier C, Persson B, Lindner P, Cabane B: Protein adsorption and complement activation for di-block copolymer nanoparticles. Biomaterials 2011, 32: 1646-1656. 10.1016/j.biomaterials.2010.10.026
Article
Google Scholar
Deng ZJ, Liang MT, Monteiro M, Toth I, Minchin RF: Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotech 2011, 6: 39-44. 10.1038/nnano.2010.250
Article
Google Scholar
Cifuentes-Rius A, de Puig H, Kah JCY, Borros S, Hamad-Schifferli K: Optimizing the properties of the protein corona surrounding nanoparticles for tuning payload release. ACS Nano 2013, 7: 10066-10074. 10.1021/nn404166q
Article
Google Scholar
Kah JCY, Chen J, Zubieta A, Hamad-Schifferli K: Exploiting the protein corona around gold nanorods for loading and triggered release. ACS Nano 2012, 6: 6730-6740. 10.1021/nn301389c
Article
Google Scholar
Faure AC, Dufort S, Josserand V, Perriat P, Coll JL, Roux S, Tillement O: Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings. Small 2009, 5: 2565-2575. 10.1002/smll.200900563
Article
Google Scholar
Lipka J, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, Schleh C, Kissel T, Parak WJ, Kreyling WG: Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 2010, 31: 6574-6581. 10.1016/j.biomaterials.2010.05.009
Article
Google Scholar
Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y: PEG-modified gold nanorods with a stealth character for in vivo applications. J Controlled Release 2006, 114: 343-347. 10.1016/j.jconrel.2006.06.017
Article
Google Scholar
Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L: Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 2004, 11: 169-183. 10.1080/10717540490433895
Article
Google Scholar
Ogawara K, Furumoto K, Nagayama S, Minato K, Higaki K, Kai T, Kimura T: Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: implications for rational design of nanoparticles. J Controlled Release 2004, 100: 451-455. 10.1016/j.jconrel.2004.07.028
Article
Google Scholar
Schaffler M, Sousa F, Wenk A, Sitia L, Hirn S, Schleh C, Haberl N, Violatto M, Canovi M, Andreozzi P, Salmona M, Bigini P, Kreyling WG, Krol S: Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials 2014, 35: 3455-3466. 10.1016/j.biomaterials.2013.12.100
Article
Google Scholar
Kratz F: A clinical update of using albumin as a drug vehicle - a commentary. J Controlled Release 2014, doi:10.1016/j.jconrel.2014.03.013
Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML: Protein corona significantly reduces active targeting yield. Chem Commun (Camb) 2013, 49: 2557-2559. 10.1039/c3cc37307j
Article
Google Scholar
Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Aberg C, Mahon E, Dawson KA: Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotech 2013, 8: 137-143. 10.1038/nnano.2012.237
Article
Google Scholar
Dai Q, Walkey C, Chan WCW: Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew Chem Int Edit 2014, 53: 5093-5096.
Article
Google Scholar