Alivisatos AP. Less is more in medicine—sophisticated forms of nanotechnology will find some of their first real-world applications in biomedical research, disease diagnosis and possibly, therapy. Sci Am. 2001;285:66–73.
Article
Google Scholar
Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9. doi:10.1038/nm1622.
Article
Google Scholar
Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol. 2009;4(10):634–41. doi:10.1038/nnano.2009.242.
Article
Google Scholar
Auzel FE. Materials and devices using double-pumped phosphors with energy transfer. Proc IEEE. 1973;61(6):758–85. doi:10.1109/PROC.1973.9155.
Article
Google Scholar
Bachas S, Kohrs B, Wade H. Unconventional coupling between ligand recognition and allosteric control in the multidrug resistance gene regulator, BmrR. ChemMedChem. 2017;12(6):426–30. doi:10.1002/cmdc.201700017.
Article
Google Scholar
Bachmann MF, Rohrer UH, Kundig TM, Burki K, Hengartner H, Zinkernagel RM. The influence of antigen organization on B cell responsiveness. Science. 1993;262(5138):1448–51.
Article
Google Scholar
Bastus NG, Sanchez-Tillo E, Pujals S, Farrera C, Kogan MJ, Giralt E, Celada A, Lloberas J, Puntes V. Peptides conjugated to gold nanoparticles induce macrophage activation. Mol Immunol. 2009a;46(4):743–8. doi:10.1016/j.molimm.2008.08.277.
Article
Google Scholar
Bastus NG, Sanchez-Tillo E, Pujals S, Farrera C, Lopez C, Giralt E, Celada A, Lloberas J, Puntes V. Homogeneous conjugation of peptides onto gold nanoparticles enhances macrophage response. ACS Nano. 2009b;3(6):1335–44. doi:10.1021/nn8008273.
Article
Google Scholar
Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013;13(10):727–38. doi:10.1038/nrc3597.
Article
Google Scholar
Bhattacharyya S, Bhattacharya R, Curley S, McNiven MA, Mukherjee P. Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis. Proc Natl Acad Sci USA. 2010;107(33):14541–6. doi:10.1073/pnas.1006507107.
Article
Google Scholar
Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW. The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation. 2002;70(9–10):537–46. doi:10.1046/j.1432-0436.2002.700907.x.
Article
Google Scholar
Bobyk L, Edouard M, Deman P, Vautrin M, Pernet-Gallay K, Delaroche J, Adam JF, Esteve F, Ravanat JL, Elleaume H. Photoactivation of gold nanoparticles for glioma treatment. Nanomedicine. 2013;9(7):1089–97. doi:10.1016/j.nano.2013.04.007.
Article
Google Scholar
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;13(7):730–7. doi:10.1038/nm0797-730.
Article
Google Scholar
Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science. 2000;287(5458):1658–60.
Article
Google Scholar
Brun E, Sanche L, Sicard-Roselli C. Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf B Biointerfaces. 2009;72(1):128–34. doi:10.1016/j.colsurfb.2009.03.025.
Article
Google Scholar
Butterworth KT, Coulter JA, Jain S, Forker J, McMahon SJ, Schettino G, Prise KM, Currell FJ, Hirst DG. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology. 2010;21(29):295101. doi:10.1088/0957-4484/21/29/295101.
Article
Google Scholar
Campbell DF, Saenz R, Bharati IS, Seible D, Zhang L, Esener S, Messmer B, Larsson M, Messmer D. Enhanced anti-tumor immune responses and delay of tumor development in human epidermal growth factor receptor 2 mice immunized with an immunostimulatory peptide in poly(d, l-lactic-co-glycolic) acid nanoparticles. Breast Cancer Res. 2015;17:48. doi:10.1186/s13058-015-0552-9.
Article
Google Scholar
Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA. 1999;96(8):4240–5.
Article
Google Scholar
Carpin LB, Bickford LR, Agollah G, Yu TK, Schiff R, Li Y, Drezek RA. Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res Treat. 2011;125(1):27–34. doi:10.1007/s10549-010-0811-5.
Article
Google Scholar
Carter JD, Cheng NN, Qu Y, Suarez GD, Guo T. Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem B. 2007;111(40):11622–5. doi:10.1021/jp075253u.
Article
Google Scholar
Casals E, Vázquez-Campos S, Bastús NG, Puntes V. Distribution and potential toxicity of engineered inorganic nanoparticles and carbon nanostructures in biological systems. TrAC Trends Anal Chem. 2008;27(8):672–83. doi:10.1016/j.trac.2008.06.004.
Article
Google Scholar
Clappier E, Gerby B, Sigaux F, Delord M, Touzri F, Hernandez L, Ballerini P, Baruchel A, Pflumio F, Soulier J. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J Exp Med. 2011;208(4):653–61. doi:10.1084/jem.20110105.
Article
Google Scholar
Clawson C, Huang CT, Futalan D, Seible DM, Saenz R, Larsson M, Ma W, Minev B, Zhang F, Ozkan M, Ozkan C, Esener S, Messmer D. Delivery of a peptide via poly(d, l-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell-stimulatory capacity. Nanomedicine. 2010;6(5):651–61. doi:10.1016/j.nano.2010.03.001.
Article
Google Scholar
Comenge J, Sotelo C, Romero F, Gallego O, Barnadas A, Parada TG, Dominguez F, Puntes VF. Detoxifying antitumoral drugs via nanoconjugation: the case of gold nanoparticles and cisplatin. PLoS ONE. 2012;7(10):e47562. doi:10.1371/journal.pone.0047562.
Article
Google Scholar
Chavany C, Saison-Behmoaras T, Le Doan T, Puisieux F, Couvreur P, Helene C. Adsorption of oligonucleotides onto polyisohexylcyanoacrylate nanoparticles protects them against nucleases and increases their cellular uptake. Pharm Res. 1994;11(9):1370–8.
Article
Google Scholar
Chiang CT, Yeh PY, Gao M, Chen CW, Yeh LC, Feng WC, Kuo SH, Hsu CH, Lu YS, Cheng AL. Combinations of mTORC1 inhibitor RAD001 with gemcitabine and paclitaxel for treating non-Hodgkin lymphoma. Cancer Lett. 2010;298(2):195–203. doi:10.1016/j.canlet.2010.07.005.
Article
Google Scholar
Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, Hill RP, Jaffray DA. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res. 2010;173(6):719–28. doi:10.1667/RR1984.1.
Article
Google Scholar
Cho SK, Pedram A, Levin ER, Kwon YJ. Acid-degradable core-shell nanoparticles for reversed tamoxifen-resistance in breast cancer by silencing manganese superoxide dismutase (MnSOD). Biomaterials. 2013;34(38):10228–37. doi:10.1016/j.biomaterials.2013.09.003.
Article
Google Scholar
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84. doi:10.1038/nrc1590.
Article
Google Scholar
Dlugosz A, Janecka A. ABC transporters in the development of multidrug resistance in cancer therapy. Curr Pharm Des. 2016;22(30):4705–16.
Article
Google Scholar
Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA. 1998;95(26):15665–70.
Article
Google Scholar
Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8. doi:10.1038/ni1102-991.
Article
Google Scholar
Evan G, Littlewood T. A matter of life and cell death. Science. 1998;281(5381):1317–22.
Article
Google Scholar
Fan W, Shen B, Bu W, Chen F, He Q, Zhao K, Zhang S, Zhou L, Peng W, Xiao Q, Ni D, Liu J, Shi J. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials. 2014;35(32):8992–9002. doi:10.1016/j.biomaterials.2014.07.024.
Article
Google Scholar
Fan W, Shen B, Bu W, Chen F, Zhao K, Zhang S, Zhou L, Peng W, Xiao Q, Xing H, Liu J, Ni D, He Q, Shi J. Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging. J Am Chem Soc. 2013;135(17):6494–503. doi:10.1021/ja312225b.
Article
Google Scholar
Fan Y, Moon JJ. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines (Basel). 2015;3(3):662–85. doi:10.3390/vaccines3030662.
Article
Google Scholar
Fantechi E, Roca AG, Sepúlveda B, Torruella P, Estradé S, Peiró F, Coy E, Jurga F, Bastús NG, Nogués J, Puntes V. Seeded growth synthesis of Au–Fe3O4 heterostructured nanocrystals: rational design and mechanistic insights. Chem Mater. 2017;29(9):4022–35. doi:10.1021/acs.chemmater.7b00608.
Article
Google Scholar
Fojo T, Bates S. Strategies for reversing drug resistance. Oncogene. 2003;22(47):7512–23. doi:10.1038/sj.onc.1206951.
Article
Google Scholar
Frenkel M. Refusing treatment. Oncologist. 2013;18(5):634–6. doi:10.1634/theoncologist.2012-0436.
Article
Google Scholar
Gao W, Ye G, Duan X, Yang X, Yang VC. Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer. Int J Nanomed. 2017;12:1047–64. doi:10.2147/IJN.S115215.
Article
Google Scholar
Gao Y, Foster R, Yang X, Feng Y, Shen JK, Mankin HJ, Hornicek FJ, Amiji MM, Duan Z. Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. Oncotarget. 2015a;6(11):9313–26. doi:10.18632/oncotarget.3220.
Article
Google Scholar
Gao Y, Shen JK, Milane L, Hornicek FJ, Amiji MM, Duan Z. Targeted cancer therapy; nanotechnology approaches for overcoming drug resistance. Curr Med Chem. 2015b;22(11):1335–47.
Article
Google Scholar
Garcia-Fernandez L, Garcia-Pardo J, Tort O, Prior I, Brust M, Casals E, Lorenzo J, Puntes VF. Conserved effects and altered trafficking of Cetuximab antibodies conjugated to gold nanoparticles with precise control of their number and orientation. Nanoscale. 2017;9(18):6111–21. doi:10.1039/c7nr00947j.
Article
Google Scholar
Geng F, Xing JZ, Chen J, Yang R, Hao Y, Song K, Kong B. Pegylated glucose gold nanoparticles for improved in vivo bio-distribution and enhanced radiotherapy on cervical cancer. J Biomed Nanotechnol. 2014;10(7):1205–16.
Article
Google Scholar
Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes PJ. Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life. 2010;1(1n02):17–32. doi:10.1142/S1793984410000067.
Article
Google Scholar
Gong J, Jaiswal R, Mathys JM, Combes V, Grau GE, Bebawy M. Microparticles and their emerging role in cancer multidrug resistance. Cancer Treat Rev. 2012;38(3):226–34. doi:10.1016/j.ctrv.2011.06.005.
Article
Google Scholar
Gonzalez E, Arbiol J, Puntes VF. Carving at the nanoscale: sequential galvanic exchange and Kirkendall growth at room temperature. Science. 2011;334(6061):1377–80. doi:10.1126/science.1212822.
Article
Google Scholar
Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58. doi:10.1038/nrc706.
Article
Google Scholar
Goy-Lopez S, Juarez J, Alatorre-Meda M, Casals E, Puntes VF, Taboada P, Mosquera V. Physicochemical characteristics of protein-NP bioconjugates: the role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition. Langmuir. 2012;28(24):9113–26. doi:10.1021/la300402w.
Article
Google Scholar
Greaves M. Cancer: the evolutionary legacy. New York: Oxford University Press Inc; 2000.
Google Scholar
Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13. doi:10.1038/nature10762.
Article
Google Scholar
Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446(7132):153–8. doi:10.1038/nature05610.
Article
Google Scholar
Haase M, Schafer H. Upconverting nanoparticles. Angew Chem Int Ed Engl. 2011;50(26):5808–29. doi:10.1002/anie.201005159.
Article
Google Scholar
Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol. 2008;60(8):977–85. doi:10.1211/jpp.60.8.0005.
Article
Google Scholar
Han G, Martin CT, Rotello VM. Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents. Chem Biol Drug Des. 2006;67(1):78–82. doi:10.1111/j.1747-0285.2005.00324.x.
Article
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.
Article
Google Scholar
Harris CC. p53 tumor suppressor gene: from the basic research laboratory to the clinic-an abridged historical perspective. Carcinogenesis. 1996;17(6):1187–98.
Article
Google Scholar
Henriksen-Lacey M, Korsholm KS, Andersen P, Perrie Y, Christensen D. Liposomal vaccine delivery systems. Expert Opin Drug Deliv. 2011;8(4):505–19. doi:10.1517/17425247.2011.558081.
Article
Google Scholar
Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007;446(7137):749–57. doi:10.1038/nature05630.
Article
Google Scholar
Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128(6):2115–20. doi:10.1021/ja057254a.
Article
Google Scholar
Iyer AK, Singh A, Ganta S, Amiji MM. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv Drug Deliv Rev. 2013;65(13–14):1784–802. doi:10.1016/j.addr.2013.07.012.
Article
Google Scholar
Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater. 2001;13(18):1389. doi:10.1002/1521-4095(200109)13:18<1389:AID-ADMA1389>3.0.CO;2-F.
Article
Google Scholar
Jarvinen R, Kaasinen E, Sankila A, Rintala E, FinnBladder G. Long-term efficacy of maintenance bacillus Calmette-Guerin versus maintenance mitomycin C instillation therapy in frequently recurrent TaT1 tumours without carcinoma in situ: a subgroup analysis of the prospective, randomised FinnBladder I study with a 20-year follow-up. Eur Urol. 2009;56(2):260–5. doi:10.1016/j.eururo.2009.04.009.
Article
Google Scholar
Jiang QL, Zheng SW, Hong RY, Deng SM, Guo L, Hu RL, Gao B, Huang M, Cheng LF, Liu GH, Wang YQ. Folic acid-conjugated Fe3O4 magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo. Appl Surf Sci. 2014;307:224–33. doi:10.1016/j.apsusc.2014.04.018.
Article
Google Scholar
Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80. doi:10.1126/science.aaa6204.
Article
Google Scholar
Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455(1):152–62.
Article
Google Scholar
Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65. doi:10.1056/NEJMoa0804385.
Article
Google Scholar
Kato R, Frontino G, Vassanelli P. Decreased activities of liver microsomal drug-metabolizing enzymes in the rats bearing Walker carcinosarcoma. Experientia. 1963;19:31–2.
Article
Google Scholar
Kemp JA, Shim MS, Heo CY, Kwon YJ. “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev. 2016;98:3–18. doi:10.1016/j.addr.2015.10.019.
Article
Google Scholar
Kiberstis PA, Travis J. Celebrating a glass half-full. Science. 2006;312(5777):1157. doi:10.1126/science.312.5777.1157.
Article
Google Scholar
Kievit FM, Stephen ZR, Wang K, Dayringer CJ, Sham JG, Ellenbogen RG, Silber JR, Zhang M. Nanoparticle mediated silencing of DNA repair sensitizes pediatric brain tumor cells to gamma-irradiation. Mol Oncol. 2015;9(6):1071–80. doi:10.1016/j.molonc.2015.01.006.
Article
Google Scholar
Kirtane AR, Kalscheuer SM, Panyam J. Exploiting nanotechnology to overcome tumor drug resistance: challenges and opportunities. Adv Drug Deliv Rev. 2013;65(13–14):1731–47. doi:10.1016/j.addr.2013.09.001.
Article
Google Scholar
Lai GH, Zhang Z, Sirica AE. Celecoxib acts in a cyclooxygenase-2-independent manner and in synergy with emodin to suppress rat cholangiocarcinoma growth in vitro through a mechanism involving enhanced Akt inactivation and increased activation of caspases-9 and -31. Mol Cancer Ther. 2003;2(3):265–71.
Google Scholar
Lawrence TS, Blackstock AW, McGinn C. The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Semin Radiat Oncol. 2003;13(1):13–21. doi:10.1053/srao.2003.50002.
Article
Google Scholar
Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906. doi:10.1016/j.cell.2009.10.027.
Article
Google Scholar
Liang XJ, Chen C, Zhao Y, Wang PC. Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol Biol. 2010;596:467–88. doi:10.1007/978-1-60761-416-6_21.
Article
Google Scholar
Liu CJ, Wang CH, Chen ST, Chen HH, Leng WH, Chien CC, Wang CL, Kempson IM, Hwu Y, Lai TC, Hsiao M, Yang CS, Chen YJ, Margaritondo G. Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol. 2010;55(4):931–45. doi:10.1088/0031-9155/55/4/002.
Article
Google Scholar
Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F. Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed Engl. 2011;50(4):891–5. doi:10.1002/anie.201002820.
Article
Google Scholar
Liu T, Wang C, Gu X, Gong H, Cheng L, Shi X, Feng L, Sun B, Liu Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater. 2014;26(21):3433–40. doi:10.1002/adma.201305256.
Article
Google Scholar
Liu Y, Liu Y, Bu W, Xiao Q, Sun Y, Zhao K, Fan W, Liu J, Shi J. Radiation-/hypoxia-induced solid tumor metastasis and regrowth inhibited by hypoxia-specific upconversion nanoradiosensitizer. Biomaterials. 2015;49:1–8. doi:10.1016/j.biomaterials.2015.01.028.
Article
Google Scholar
Livney YD, Assaraf YG. Rationally designed nanovehicles to overcome cancer chemoresistance. Adv Drug Deliv Rev. 2013;65(13–14):1716–30. doi:10.1016/j.addr.2013.08.006.
Article
Google Scholar
Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205(2):275–92. doi:10.1002/path.1706.
Article
Google Scholar
Lowe D. Nanoparticles mix it up with reality. 2016. http://blogs.sciencemag.org/pipeline/archives/2016/05/05/nanoparticles-mix-it-up-with-reality. Accessed 5 May 2016.
Luqmani YA. Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract. 2005;14(Suppl 1):35–48. doi:10.1159/000086183.
Google Scholar
MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar K, Brahmbhatt VN, Phillips L, Pattison ST, Petti C, Stillman B, Graham RM, Brahmbhatt H. Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol. 2009;27(7):643–51. doi:10.1038/nbt.1547.
Article
Google Scholar
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189–207.
Article
Google Scholar
McCarthy JR, Kelly KA, Sun EY, Weissleder R. Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine. 2007;2(2):153–67. doi:10.2217/17435889.2.2.153.
Article
Google Scholar
Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, Nel AE. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano. 2010;4(8):4539–50. doi:10.1021/nn100690m.
Article
Google Scholar
Mezzaroba N, Zorzet S, Secco E, Biffi S, Tripodo C, Calvaruso M, Mendoza-Maldonado R, Capolla S, Granzotto M, Spretz R, Larsen G, Noriega S, Lucafo M, Mansilla E, Garrovo C, Marin GH, Baj G, Gattei V, Pozzato G, Nunez L, Macor P. New potential therapeutic approach for the treatment of B-Cell malignancies using chlorambucil/hydroxychloroquine-loaded anti-CD20 nanoparticles. PLoS ONE. 2013;8(9):e74216. doi:10.1371/journal.pone.0074216.
Article
Google Scholar
Mi Y, Guo Y, Feng SS. Nanomedicine for multimodality treatment of cancer. Nanomedicine. 2012a;7(12):1791–4. doi:10.2217/nnm.12.159.
Article
Google Scholar
Mi Y, Liu X, Zhao J, Ding J, Feng SS. Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials. 2012b;33(30):7519–29. doi:10.1016/j.biomaterials.2012.06.100.
Article
Google Scholar
Milane L, Ganesh S, Shah S, Duan ZF, Amiji M. Multi-modal strategies for overcoming tumor drug resistance: hypoxia, the Warburg effect, stem cells, and multifunctional nanotechnology. J Control Release. 2011;155(2):237–47. doi:10.1016/j.jconrel.2011.03.032.
Article
Google Scholar
Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314(5796):126–9. doi:10.1126/science.1129003.
Article
Google Scholar
Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv Cancer Res. 2010;107:57–117. doi:10.1016/S0065-230X(10)07003-X.
Article
Google Scholar
Nagy JA, Dvorak HF. Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets. Clin Exp Metastasis. 2012;29(7):657–62. doi:10.1007/s10585-012-9500-6.
Article
Google Scholar
Nawroth I, Alsner J, Behlke MA, Besenbacher F, Overgaard J, Howard KA, Kjems J. Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFalpha prevents radiation-induced fibrosis. Radiother Oncol. 2010;97(1):143–8. doi:10.1016/j.radonc.2010.09.010.
Article
Google Scholar
NIH. 2017. https://www.cancer.gov/about-cancer/understanding/statistics. Accessed 30 Jun 2017.
Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15(10):1957–62. doi:10.1021/cm020732l.
Article
Google Scholar
Noll A, Thomas C, Herbring V, Zollmann T, Barth K, Mehdipour AR, Tomasiak TM, Bruchert S, Joseph B, Abele R, Olieric V, Wang M, Diederichs K, Hummer G, Stroud RM, Pos KM, Tampe R. Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP. Proc Natl Acad Sci USA. 2017;114(4):E438–47. doi:10.1073/pnas.1620009114.
Article
Google Scholar
Ostermayer FW. Preparation and properties of infrared-to-visible conversion phosphors. Metall Trans. 1971;2(3):747–55. doi:10.1007/BF02662731.
Article
Google Scholar
Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182(8):4499–506. doi:10.4049/jimmunol.0802740.
Article
Google Scholar
Pankhurst QA, Thanh NTK, Jones SK, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2009;42:224001.
Article
Google Scholar
Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005a;2(3):e73. doi:10.1371/journal.pmed.0020073.
Article
Google Scholar
Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, Zakowski MF, Heelan RT, Kris MG, Varmus HE. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005b;2(1):e17. doi:10.1371/journal.pmed.0020017.
Article
Google Scholar
Park YM, Lee SJ, Kim YS, Lee MH, Cha GS, Jung ID, Kang TH, Han HD. Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw. 2013;13(5):177–83. doi:10.4110/in.2013.13.5.177.
Article
Google Scholar
Peng CL, Lai PS, Lin FH, Yueh-Hsiu WuS, Shieh MJ. Dual chemotherapy and photodynamic therapy in an HT-29 human colon cancer xenograft model using SN-38-loaded chlorin-core star block copolymer micelles. Biomaterials. 2009;30(21):3614–25. doi:10.1016/j.biomaterials.2009.03.048.
Article
Google Scholar
Petryk AA, Giustini AJ, Gottesman RE, Trembly BS, Hoopes PJ. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model. Int J Hyperth. 2013;29(8):819–27. doi:10.3109/02656736.2013.845801.
Article
Google Scholar
Pimblott SM, LaVerne JA. Production of low-energy electrons by ionizing radiation. Radiat Phys Chem. 2007;8–9:1244–7. doi:10.1016/j.radphyschem.2007.02.012.
Article
Google Scholar
Prego C, Paolicelli P, Diaz B, Vicente S, Sanchez A, Gonzalez-Fernandez A, Alonso MJ. Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine. 2010;28(14):2607–14. doi:10.1016/j.vaccine.2010.01.011.
Article
Google Scholar
Pu P, Zhang Y, Jiang D. Apoptosis induced by hyperthermia in human glioblastoma cell line and murine glioblastoma. Chin J Cancer Res. 2013;12:257–62. doi:10.1007/BF02983501.
Article
Google Scholar
Puntes V. Design and pharmacokinetical aspects for the use of inorganic nanoparticles in radiomedicine. Br J Radiol. 2016;89(1057):20150210. doi:10.1259/bjr.20150210.
Article
Google Scholar
Rahman WN, Corde S, Yagi N, Abdul Aziz SA, Annabell N, Geso M. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. Int J Nanomed. 2014;9:2459–67. doi:10.2147/IJN.S59471.
Article
Google Scholar
Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol. 2006;27(12):573–9. doi:10.1016/j.it.2006.10.005.
Article
Google Scholar
Robey RW, Shukla S, Finley EM, Oldham RK, Barnett D, Ambudkar SV, Fojo T, Bates SE. Inhibition of P-glycoprotein (ABCB1)- and multidrug resistance-associated protein 1 (ABCC1)-mediated transport by the orally administered inhibitor, CBT-1((R)). Biochem Pharmacol. 2008;75(6):1302–12. doi:10.1016/j.bcp.2007.12.001.
Article
Google Scholar
Robey RW, Shukla S, Steadman K, Obrzut T, Finley EM, Ambudkar SV, Bates SE. Inhibition of ABCG2-mediated transport by protein kinase inhibitors with a bisindolylmaleimide or indolocarbazole structure. Mol Cancer Ther. 2007;6(6):1877–85. doi:10.1158/1535-7163.MCT-06-0811.
Article
Google Scholar
Sanche L. Low energy electron-driven damage in biomolecules. Eur Phys J D. 2005;35(2):367–90. doi:10.1140/epjd/e2005-00206-6.
Article
Google Scholar
Saunders NA, Simpson F, Thompson EW, Hill MM, Endo-Munoz L, Leggatt G, Minchin RF, Guminski A. Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med. 2012;4(8):675–84. doi:10.1002/emmm.201101131.
Article
Google Scholar
Seiwert TY, Salama JK, Vokes EE. The chemoradiation paradigm in head and neck cancer. Nat Clin Pract Oncol. 2007;4(3):156–71. doi:10.1038/ncponc0750.
Article
Google Scholar
Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436(7050):568–72. doi:10.1038/nature03794.
Article
Google Scholar
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. doi:10.1038/nrc.2016.108.
Article
Google Scholar
Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz MA. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science. 2010;328(5979):749–52. doi:10.1126/science.1185837.
Article
Google Scholar
Shinkai M. Functional magnetic particles for medical application. J Biosci Bioeng. 2002;94(6):606–13.
Article
Google Scholar
Shipitsin M, Polyak K. The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Investig. 2008;88(5):459–63. doi:10.1038/labinvest.2008.14.
Article
Google Scholar
Silva JM, Videira M, Gaspar R, Preat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release. 2013;168(2):179–99. doi:10.1016/j.jconrel.2013.03.010.
Article
Google Scholar
Smyth MJ. Tummor immunology. Curr Opin Immunol. 2007;19(2):200–2. doi:10.1016/j.coi.2007.02.013.
Article
Google Scholar
Song CW, Park HJ, Lee CK, Griffin R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int J Hyperth. 2005;21(8):761–7. doi:10.1080/02656730500204487.
Article
Google Scholar
Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol. 2016;40:41–8. doi:10.1016/j.copbio.2016.02.007.
Article
Google Scholar
Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, Coussens LM, DeClerck YA. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res. 2012;72(10):2473–80. doi:10.1158/0008-5472.CAN-12-0122.
Article
Google Scholar
Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control. 2003;10(2):159–65.
Article
Google Scholar
Toffoli G, Cecchin E, Gasparini G, D’Andrea M, Azzarello G, Basso U, Mini E, Pessa S, De Mattia E, Lo Re G, Buonadonna A, Nobili S, De Paoli P, Innocenti F. Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28(5):866–71. doi:10.1200/JCO.2009.23.6125.
Article
Google Scholar
Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, Chomienne C, Ishikawa F, Schuringa JJ, Stassi G, Huntly B, Herrmann H, Soulier J, Roesch A, Schuurhuis GJ, Wohrer S, Arock M, Zuber J, Cerny-Reiterer S, Johnsen HE, Andreeff M, Eaves C. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer. 2012;12(11):767–75. doi:10.1038/nrc3368.
Article
Google Scholar
Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine. 2012;7(4):597–615. doi:10.2217/nnm.12.22.
Article
Google Scholar
Von Sonntag C. Free-radical-induced DNA damage and its repair. A chemical perspective. Berlin: Springer-Verlag; 2006. doi:10.1007/3-540-30592-0.
Book
Google Scholar
Wang Y, Gao S, Ye WH, Yoon HS, Yang YY. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater. 2006;5(10):791–6. doi:10.1038/nmat1737.
Article
Google Scholar
WHO. 2017. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 30 Jun 2017.
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014. doi:10.1038/natrevmats.2016.14.
Article
Google Scholar
Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science. 2002;296(5570):1046–9. doi:10.1126/science.1067431.
Article
Google Scholar
Wolfe T, Chatterjee D, Lee J, Grant JD, Bhattarai S, Tailor R, Goodrich G, Nicolucci P, Krishnan S. Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo. Nanomedicine. 2015;11(5):1277–83. doi:10.1016/j.nano.2014.12.016.
Article
Google Scholar
Wu C, Gong MQ, Liu BY, Zhuo RX, Cheng SX. Co-delivery of multiple drug resistance inhibitors by polymer/inorganic hybrid nanoparticles to effectively reverse cancer drug resistance. Colloids Surf B Biointerfaces. 2017;149:250–9. doi:10.1016/j.colsurfb.2016.10.029.
Article
Google Scholar
Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002;3(8):487–97.
Article
Google Scholar
Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, Velculescu VE, Kinzler KW, Vogelstein B, Iacobuzio-Donahue CA. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7. doi:10.1038/nature09515.
Article
Google Scholar
Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010;31(6):220–7. doi:10.1016/j.it.2010.04.002.
Article
Google Scholar
Yuan Y, Cai T, Xia X, Zhang R, Chiba P, Cai Y. Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Deliv. 2016;23(9):3350–7. doi:10.1080/10717544.2016.1178825.
Article
Google Scholar
Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, Liang XJ. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials. 2012;33(27):6408–19. doi:10.1016/j.biomaterials.2012.05.047.
Article
Google Scholar
Zhang XY, Zhang PY. Nanotechnology for multimodality treatment of cancer. Oncol Lett. 2016;12(6):4883–6. doi:10.3892/ol.2016.5322.
Google Scholar
Zhao R, Yang FT, Alexander DR. An oncogenic tyrosine kinase inhibits DNA repair and DNA-damage-induced Bcl-xL deamidation in T cell transformation. Cancer Cell. 2004;5(1):37–49.
Article
Google Scholar
Zhu W, Kato Y, Artemov D. Heterogeneity of tumor vasculature and antiangiogenic intervention: insights from MR angiography and DCE-MRI. PLoS ONE. 2014;9(1):e86583. doi:10.1371/journal.pone.0086583.
Article
Google Scholar