Abdel Razek AA, Gaballa G, Ashamalla G, Alashry MS, Nada N. Dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging and diffusion-weighted magnetic resonance imaging in differentiating recurrent head and neck cancer from postradiation changes. J Comput Assist Tomogr. 2015;39:849–54.
Article
Google Scholar
Abdel Razek AA, Samir S, Ashmalla GA. Characterization of parotid tumors with dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging and diffusion-weighted MR imaging. J Comput Assist Tomogr. 2017;41:131–6.
Article
Google Scholar
Afzalipour R, Khoei S, Khoee S, Shirvalilou S, Jamali Raoufi N, Motevalian M, Karimi MR. Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas. ACS Biomaterials Sci Eng. 2019;5:6000–11.
Article
CAS
Google Scholar
Ahrén M, Selegård L, Klasson A, Söderlind F, Abrikossova N, Skoglund C, Bengtsson T, Engström M, Käll P-O, Uvdal K. Synthesis and characterization of pegylated GD2O3 nanoparticles for MRI contrast enhancement. Langmuir. 2010;26:5753–62.
Article
CAS
Google Scholar
Arvold ND, Reardon DA. Treatment options and outcomes for glioblastoma in the elderly patient. Clin Interv Aging. 2014;9:357–67.
Google Scholar
Babaei M, Ganjalikhani M. The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy. BioImpacts. 2014;4:15–20.
CAS
Google Scholar
Bonvalot S, Rutkowski PL, Thariat J, Carrère S, Ducassou A, Sunyach MP, Agoston P, Hong A, Mervoyer A, Rastrelli M, et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (ActInSarc): a multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol 2019; 20:1148–1159.
Boshnjaku V, Shim K-W, Tsurubuchi T, Ichi S, Szany EV, Xi G, Mania-Farnell B, McLone DG, Tomita T, Mayanil CS. Nuclear localization of folate receptor alpha: a new role as a transcription factor. Scientific reports. 2012;2:980–980.
Article
CAS
Google Scholar
Bozard BR, Ganapathy PS, Duplantier J, Mysona B, Ha Y, Roon P, Smith R, Goldman ID, Prasad P, Martin PM, et al. Molecular and Biochemical Characterization of Folate Transport Proteins in Retinal Müller Cells. Invest Ophthalmol Vis Sci. 2010;51:3226–35.
Article
Google Scholar
Cassim SM, Giustini AJ, Petryk AA, Strawbridge RA, Hoopes PJ: Iron Oxide Hyperthermia And Radiation Cancer Treatment. Proceedings of SPIE--the International Society for Optical Engineering 2009, 7181:71810O.
Chen G, Ohulchanskyy TY, Law WC, Agren H, Prasad PN. Monodisperse NaYbF4: Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale. 2011;3:2003–8.
Article
CAS
Google Scholar
Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem Rev. 2016;116:2826–85.
Article
CAS
Google Scholar
Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Materials. 2017;2:17024.
Article
CAS
Google Scholar
Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, Frangioni JV. Design Considerations for Tumor-Targeted Nanoparticles. Nat Nanotechnol. 2010;5:42–7.
Article
CAS
Google Scholar
Damasco JA, Chen G, Shao W, Ågren H, Huang H, Song W, Lovell JF, Prasad PN. Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging. ACS Appl Mater Interfaces. 2014;6:13884–93.
Article
CAS
Google Scholar
Dasgupta A, Biancacci I, Kiessling F, Lammers T. Imaging-assisted anticancer nanotherapy. Theranostics. 2020;10:956–67.
Article
CAS
Google Scholar
Deng J, Xu S, Hu W, Xun X, Zheng L, Su M. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials. 2018;154:24–33.
Article
CAS
Google Scholar
Dong S, Cho HJ, Lee YW, Roman M. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromology. 2014;15:1560–7.
Article
CAS
Google Scholar
Dorazio SJ, Tsitovich PB, Siters KE, Spernyak JA, Morrow JR. Iron(II) PARACEST MRI Contrast Agents. J Am Chem Soc. 2011;133:14154–6.
Article
CAS
Google Scholar
Du B, Yu M, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Materials. 2018;3:358–74.
Article
Google Scholar
Dufort S, Appelboom G, Verry C, Barbier EL, Lux F, Bräuer-Krisch E, Sancey L, Chang SD, Zhang M, Roux S, et al. Ultrasmall theranostic gadolinium-based nanoparticles improve high-grade rat glioma survival. J Clin Neurosci. 2019;67:215–9.
Article
CAS
Google Scholar
Dühnen S, Rinkel T, Haase M. Size Control of Nearly Monodisperse β-NaGdF4 Particles Prepared from Small α-NaGdF4 Nanocrystals. Chem Mater. 2015;27:4033–9.
Article
CAS
Google Scholar
Erika P, Samuel L, Hynd R, Noriko U, Katsumi K, Yoshiya F, Le Claude S, Sandrine L. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology. 2010;21:085103.
Article
CAS
Google Scholar
Fang J, Chandrasekharan P, Liu XL, Yang Y, Lv YB, Yang CT, Ding J. Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging. Biomaterials. 2014;35:1636–42.
Article
CAS
Google Scholar
Feliu N, Docter D, Heine M, del Pino P, Ashraf S, Kolosnjaj-Tabi J, Macchiarini P, Nielsen P, Alloyeau D, Gazeau F, et al. In vivo degeneration and the fate of inorganic nanoparticles. Chem Soc Rev. 2016;45:2440–57.
Article
CAS
Google Scholar
Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res. 1949;2000:6.
Google Scholar
Guerreiro A, Chatterton N, Crabb EM, Golding JP. A comparison of the radiosensitisation ability of 22 different element metal oxide nanoparticles using clinical megavoltage X-rays. Cancer Nanotechnology. 2019;10:10.
Article
CAS
Google Scholar
Guzmán C, Bagga M, Kaur A, Westermarck J, Abankwa D. ColonyArea: An ImageJ Plugin to Automatically Quantify Colony Formation in Clonogenic Assays. PLoS ONE. 2014;9:e92444.
Article
CAS
Google Scholar
He M, Huang P, Zhang C, Hu H, Bao C, Gao G, He R, Cui D. Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an oa/ionic liquid two-phase system for in vivo dual-modality imaging. Adv Func Mater. 2011;21:4470–7.
Article
CAS
Google Scholar
Holland EC. Glioblastoma multiforme: The terminator. Proc Natl Acad Sci USA. 2000;97:6242–4.
Article
CAS
Google Scholar
Hossain M, Su M. Nanoparticle location and material dependent dose enhancement in X-ray radiation therapy. J Phys Chem C. 2012;116:23047–52.
Article
CAS
Google Scholar
Hou Y, Qiao R, Fang F, Wang X, Dong C, Liu K, Liu C, Liu Z, Lei H, Wang F, Gao M. NaGdF4 nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo. ACS Nano. 2013;7:330–8.
Article
CAS
Google Scholar
Hsu S-h. Ho T-T, Tseng T-C: Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates. Biomaterials. 2012;33:3639–50.
Article
CAS
Google Scholar
Jin X, Fang F, Liu J, Jiang C, Han X, Song Z, Chen J, Sun G, Lei H, Lu L. An ultrasmall and metabolizable PEGylated NaGdF4: Dy nanoprobe for high-performance T1/T2-weighted MR and CT multimodal imaging. Nanoscale. 2015;7:15680–8.
Article
CAS
Google Scholar
Johnson NJJ, Oakden W, Stanisz GJ, Scott Prosser R, van Veggel FCJM. Size-tunable, ultrasmall NaGdF4 nanoparticles: insights into their T1 MRI contrast enhancement. Chem Mater. 2011;23:3714–22.
Article
CAS
Google Scholar
Johnson NJJ, He S, Nguyen Huu VA, Almutairi A. Compact micellization: a strategy for ultrahigh T1 magnetic resonance contrast with gadolinium-based nanocrystals. ACS Nano. 2016;10:8299–307.
Article
CAS
Google Scholar
Kermanizadeh A, Powell LG, Stone V. A review of hepatic nanotoxicology – summation of recent findings and considerations for the next generation of study designs. J Toxicol Environ Health B. 2020;23:137–76.
Article
CAS
Google Scholar
Khoei S, Mahdavi SR, Fakhimikabir H, Shakeri-Zadeh A, Hashemian A. The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. Int J Radiat Biol. 2014;90:351–6.
Article
CAS
Google Scholar
Klein S, Sommer A, Distel LVR, Neuhuber W, Kryschi C. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun. 2012;425:393–7.
Article
CAS
Google Scholar
Kong B, Seog JH, Graham LM, Lee SB. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine (London, England). 2011;6:929–41.
Article
CAS
Google Scholar
Kumar R, Nyk M, Ohulchanskyy TY, Flask CA, Prasad PN. Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals. Adv Func Mater. 2009;19:853–9.
Article
CAS
Google Scholar
Laprise-Pelletier M, Simão T, Fortin M-A. Gold Nanoparticles in Radiotherapy and Recent Progress in Nanobrachytherapy. Advanced Healthcare Materials. 2018;7:1701460.
Article
CAS
Google Scholar
Le Duc G, Roux S, Paruta-Tuarez A, Dufort S, Brauer E, Marais A, Truillet C, Sancey L, Perriat P, Lux F, Tillement O. Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment. Cancer Nanotechnology. 2014;5:4.
Article
CAS
Google Scholar
Lewinski N, Colvin V, Drezek R. Cytotoxicity of Nanoparticles. Small. 2008;4:26–49.
Article
CAS
Google Scholar
Li Z, Zhang Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology. 2008;19:345606.
Article
CAS
Google Scholar
Li Y, Yun K-H, Lee H, Goh S-H, Suh Y-G, Choi Y. Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials. 2019;197:12–9.
Article
CAS
Google Scholar
Lisjak D, Plohl O, Ponikvar-Svet M, Majaron B. Dissolution of upconverting fluoride nanoparticles in aqueous suspensions. RSC Advances. 2015;5:27393–7.
Article
CAS
Google Scholar
Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L. A High-Performance Ytterbium-Based Nanoparticulate Contrast Agent for In Vivo X-Ray Computed Tomography Imaging. Angew Chem Int Ed. 2012;51:1437–42.
Article
CAS
Google Scholar
Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (London, England). 2008;3:703–17.
Article
CAS
Google Scholar
Lu VM, Crawshay-Williams F, White B, Elliot A, Hill MA, Townley HE. Cytotoxicity, dose-enhancement and radiosensitization of glioblastoma cells with rare earth nanoparticles. Artif Cells Nanomed Biotechnol. 2019;47:132–43.
Article
CAS
Google Scholar
Mahajan SD, Aalinkeel R, Sykes DE, Reynolds JL, Bindukumar B, Adal A, Qi M, Toh J, Xu G, Prasad PN, Schwartz SA. Methamphetamine alters blood brain barrier permeability via the modulation of tight junction expression: Implication for HIV-1 neuropathogenesis in the context of drug abuse. Brain Res. 2008;1203:133–48.
Article
CAS
Google Scholar
Mai H-X, Zhang Y-W, Si R, Yan Z-G. Sun L-d, You L-P, Yan C-H: High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc. 2006;128:6426–36.
Article
CAS
Google Scholar
Matsumoto K, Saitoh H, Doan TLH, Shiro A, Nakai K, Komatsu A, Tsujimoto M, Yasuda R, Kawachi T, Tajima T, Tamanoi F. Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: Implications for the Auger therapy. Sci Rep. 2019;9:13275.
Article
CAS
Google Scholar
Mekuria SL, Debele TA, Tsai H-C. Encapsulation of gadolinium oxide nanoparticle (Gd2O3) Contrasting Agents in PAMAM dendrimer templates for enhanced magnetic resonance imaging in vivo. ACS Appl Mater Interfaces. 2017;9:6782–95.
Article
CAS
Google Scholar
Mohanty V, Siddiqui MR, Tomita T, Mayanil CS. Folate receptor alpha is more than just a folate transporter. Neurogenesis. 2017;4:e1263717.
Article
CAS
Google Scholar
Morcos SK. Extracellular gadolinium contrast agents: Differences in stability. Eur J Radiol. 2008;66:175–9.
Article
CAS
Google Scholar
Naduviledathu Raj A, Rinkel T, Haase M. Ostwald Ripening, Particle Size Focusing, and Decomposition of Sub-10 nm NaREF4 (RE = La, Ce, Pr, Nd) Nanocrystals. Chem Mater. 2014;26:5689–94.
Article
CAS
Google Scholar
Ngwa W, Kumar R, Sridhar S, Korideck H, Zygmanski P, Cormack RA, Berbeco R, Makrigiorgos GM. Targeted radiotherapy with gold nanoparticles: current status and future perspectives. Nanomedicine (London, England). 2014;9:1063–82.
Article
CAS
Google Scholar
Noculak A, Podhorodecki A, Pawlik G, Banski M, Misiewicz J. Ion-ion interactions in [small beta]-NaGdF4:Yb3+, Er3+ nanocrystals - the effect of ion concentration and their clustering. Nanoscale. 2015;7:13784–92.
Article
CAS
Google Scholar
O'Connor JPB, Tofts PS, Miles KA, Parkes LM, Thompson G, Jackson A: Dynamic contrast-enhanced imaging techniques: CT and MRI. Br J Radiol 2011, 84 Spec No 2:S112-S120.
Okuchi S, Rojas-Garcia A, Ulyte A, Lopez I, Ušinskienė J, Lewis M, Hassanein SM, Sanverdi E, Golay X, Thust S, et al. Diagnostic accuracy of dynamic contrast-enhanced perfusion MRI in stratifying gliomas: A systematic review and meta-analysis. Cancer Med. 2019;8:5564–73.
Article
Google Scholar
Penninckx S, Heuskin AC, Michiels C, Lucas S. Gold nanoparticles as a potent radiosensitizer: a transdisciplinary approach from physics to patient. Cancers (Basel) 2020; 12: 1.
Perazella MA. Current status of gadolinium toxicity in patients with kidney disease. Clin J Am Soc Nephrol. 2009;4:461–9.
Article
CAS
Google Scholar
Platek ME, McCloskey SA, Cruz M, Burke MS, Reid ME, Wilding GE, Rigual NR, Popat SR, Loree TR, Gupta V, et al. Quantification of the effect of treatment duration on local-regional failure after definitive concurrent chemotherapy and intensity-modulated radiation therapy for squamous cell carcinoma of the head and neck. Head Neck. 2013;35:684–8.
Article
Google Scholar
Porta F, Lamers GEM, Morrhayim J, Chatzopoulou A, Schaaf M, den Dulk H, Backendorf C, Zink JI, Kros A. Folic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery. Adv Healthcare Materials. 2013;2:281–6.
Article
CAS
Google Scholar
Rabiet M, Letouzet M, Hassanzadeh S, Simon S. Transmetallation of Gd-DTPA by Fe3+, Cu2+ and Zn2+ in water: batch experiments and coagulation-flocculation simulations. Chemosphere. 2014;95:639–42.
Article
CAS
Google Scholar
Retif P, Pinel S, Toussaint M, Frochot C, Chouikrat R: Nanoparticles for radiation therapy enhancement: the key parameters. Theranostics 2015.
Rinkel T, Nordmann J, Raj AN, Haase M. Ostwald-ripening and particle size focussing of sub-10 nm NaYF4 upconversion nanocrystals. Nanoscale. 2014;6:14523–30.
Article
CAS
Google Scholar
Schueller P, Puettmann S, Micke O, Senner V, Schaefer U, Willich N. Selenium influences the radiation sensitivity of C6 rat glioma cells. Anticancer Res. 2004;24:2913–7.
CAS
Google Scholar
Singh A, Kim W, Kim Y, Jeong K, Kang CS, Kim Y, Koh J, Mahajan SD, Prasad PN, Kim S. Multifunctional Photonics Nanoparticles for Crossing the Blood-Brain Barrier and Effecting Optically Trackable Brain Theranostics. Adv Func Mater. 2016;26:7057–66.
Article
CAS
Google Scholar
Tei L, Baranyai Z, Gaino L, Forgacs A, Vagner A, Botta M. Thermodynamic stability, kinetic inertness and relaxometric properties of monoamide derivatives of lanthanide(iii) DOTA complexes. Dalton Trans. 2015;44:5467–78.
Article
CAS
Google Scholar
Telgmann L, Wehe CA, Kunnemeyer J, Bulter AC, Sperling M, Karst U. Speciation of Gd-based MRI contrast agents and potential products of transmetalation with iron ions or parenteral iron supplements. Anal Bioanal Chem. 2012;404:2133–41.
Article
CAS
Google Scholar
Tseng T-C, Hsieh F-Y. Hsu S-h: Increased cell survival of cells exposed to superparamagnetic iron oxide nanoparticles through biomaterial substrate-induced autophagy. Biomaterials Sci. 2016;4:670–7.
Article
CAS
Google Scholar
Verry C, Sancey L, Dufort S, Le Duc G, Mendoza C, Lux F, Grand S, Arnaud J, Quesada JL, Villa J, et al. Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a phase I study protocol. BMJ Open. 2019;9:e023591.
Article
Google Scholar
Wang F, Han Y, Lim C, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature. 2010;463:1061–5.
Article
CAS
Google Scholar
Wang M, Long J, Zhang S, Liu F, Zhang X, Zhang X, Sun L, Ma L, Yu C, Wei H. Folate-Targeted Anticancer Drug Delivery via a Combination Strategy of a Micelle Complex and Reducible Conjugation. ACS Biomaterials Science & Engineering. 2020;6:1565–72.
Article
CAS
Google Scholar
Wu D, Pardridge WM. Blood-brain barrier transport of reduced folic acid. Pharm Res. 1999;16:415–9.
Article
CAS
Google Scholar
Wu X, Zong Y, Ye Z, Lu Z-R. Stability and Biodistribution of a Biodegradable Macromolecular MRI Contrast Agent Gd-DTPA Cystamine Copolymers (GDCC) in Rats. Pharm Res. 2010;27:1390–7.
Article
CAS
Google Scholar
Xie M, Xu Y, Huang J, Li Y, Wang L, Yang L, Mao H. Going even smaller: engineering sub-5 nm nanoparticles for improved delivery, biocompatibility, and functionality. WIREs Nanomed Nanobiotechnol. 2020; 1:e1644.
Xing H, Bu W, Ren Q, Zheng X, Li M, Zhang S, Qu H, Wang Z, Hua Y, Zhao K, et al. A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. Biomaterials. 2012;33:5384–93.
Article
CAS
Google Scholar
Xing H, Zheng X, Ren Q, Bu W, Ge W, Xiao Q, Zhang S, Wei C, Qu H, Wang Z, et al. Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements. Sci Rep. 2013;3:1751.
Article
CAS
Google Scholar
Xing H, Zhang S, Bu W, Zheng X, Wang L, Xiao Q, Ni D, Zhang J, Zhou L, Peng W, et al. Ultrasmall NaGdF4 Nanodots for Efficient MR Angiography and Atherosclerotic Plaque Imaging. Adv Mater. 2014;26:3867–72.
Article
CAS
Google Scholar
Yang G, Phua SZF, Bindra AK, Zhao Y. Degradability and Clearance of Inorganic Nanoparticles for Biomedical Applications. Adv Mater. 2019;31:1805730.
Article
CAS
Google Scholar
Yu M, Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano. 2015;9:6655–74.
Article
CAS
Google Scholar
Zabirnyk O, Yezhelyev M, Seleverstov O. Nanoparticles as a novel class of autophagy activators. Autophagy. 2007;3:278–81.
Article
CAS
Google Scholar
Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics. 2018;8:2521–48.
Article
CAS
Google Scholar
Zhou Z, Lu Z-R. Gadolinium-based contrast agents for MR cancer imaging. Wiley Interdiscipl Rev Nanomed Nanobiotechnol. 2013;5:1–18.
Article
CAS
Google Scholar
Zhu X, Lever SZ. Formation kinetics and stability studies on the lanthanide complexes of 1,4,7,10-tetraazacyclododecane-N, N’, N", N"’-tetraacetic acid by capillary electrophoresis. Electrophoresis. 2002;23:1348–56.
Article
CAS
Google Scholar