Abbasi E, Kafshdooz T, Bakhtiary M, Nikzamir N, Nikzamir N, Nikzamir M, et al. Biomedical and biological applications of quantum dots. Artif Cells Nanomed Biotechnol. 2016;44(3):885–91.
CAS
Google Scholar
Abdelhameed M, Martir DR, Chen S, Xu WZ, Oyeneye OO, Chakrabarti S, Zysman-Colman E, Charpentier PA. Tuning the optical properties of silicon quantum dots via surface functionalization with conjugated aromatic fluorophores. Sci Rep. 2018;8(1):3050.
Google Scholar
Ali O, Zayed D, Ramadan W, Kamel OA, Shehab M, Ebrahim S. Synthesis, characterization and cytotoxicity of polyethylene glycol-encapsulated CdTe quantum dots. Int Nano Lett. 2019;9(1):61–71.
CAS
Google Scholar
American Cancer Society. Key statistics for lung cancer. https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html. Accessed 04 Jan 2021.
Araghi S, Kiefte-de Jong JC, Van Dijk SC, Swart KMA, Van Laarhoven HW, Van Schoor NM, De Groot LCPGM, Lemmens V, Stricker BH, Uitterlinden AG, Van Der Velde N. Folic acid and vitamin B12 supplementation and the risk of cancer long-term follow-up of the B vitamins for the prevention of osteoporotic fractures (B-PROOF) trial. Cancer Epidemiol Biomark Prev. 2019;28(2):275–82.
CAS
Google Scholar
Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Ann Rev Biomed Eng. 2012;14:1–16.
CAS
Google Scholar
Au KM, Balhorn R, Balhorn MC, Park SI, Wang AZ. High-performance concurrent chemo-immuno-radiotherapy for the treatment of hematologic cancer through selective high-affinity ligand antibody mimic-functionalized doxorubicin-encapsulated nanoparticles. ACS Central Sci. 2019;5(1):122–44.
CAS
Google Scholar
Aydemir D, Hashemkhani M, Acar HY, Ulusu NN. Evaluation of the biocompatibility of the GSH-coated Ag2S quantum dots in vitro: a perfect example for the non-toxic optical probes. Mol Biol Rep. 2020;47(6):4117–29.
CAS
Google Scholar
Bajwa N, Mehra NK, Jain K, Jain NK. Targeted anticancer drug delivery through anthracycline antibiotic bearing functionalized quantum dots. Artif Cells Nanomed Biotechnol. 2016;44(7):1774–82.
CAS
Google Scholar
Barba-Vicente V, Parra MJA, Boyero-Benito JF, Auría-Soro C, Juanes-Velasco P, Landeira-Viñuela A, Furones-Cuadrado Á, Hernández Á-P, Manzano-Román R, Fuentes M. Detection of human P53 in-vitro expressed in a transcription-translation cell-free system by a novel conjugate based on cadmium sulphide nanoparticles. Nanomaterials. 2020;10(5):984.
CAS
Google Scholar
Bendale Y, Bendale V, Paul S. Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integ Med Res. 2017;6(2):141–8.
Google Scholar
Bilan R, Fleury F, Nabiev I, Sukhanova A. Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjug Chem. 2015;26(4):609–24.
CAS
Google Scholar
Bosch I, Croop J. P-glycoprotein multidrug resistance and cancer. Biochim Biophys Acta (BBA) Rev Cancer. 1996;1288(2):37–54.
Google Scholar
Cao X, Zhang Q, Zhang C, Li Z, Zheng W, Liu M, Wang B, Huang S, Li L, Huang X, Kong L. A novel approach to coat silica on quantum dots Forcing decomposition of tetraethyl orthosilicate in toluene at high temperature. J Alloys Compounds. 2020;817:152698.
CAS
Google Scholar
Coates J. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: Wiley; 2000. p. 10815–73. https://doi.org/10.1002/9780470027318.a5606.
Chapter
Google Scholar
Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol. 2004;26(3):249–61.
CAS
Google Scholar
Chauhan VP, Stylianopoulos T, Martin JD, Popović Z, Chen O, Walid S, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 2012;7:383–8.
CAS
Google Scholar
Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2003;4:11–8.
Google Scholar
Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298:1759–62.
CAS
Google Scholar
Duman FD, Erkisa M, Khodadust R, Ari F, Ulukaya E, Acar HY. Folic acid-conjugated cationic Ag2S quantum dots for optical imaging and selective doxorubicin delivery to HeLa cells. Nanomedicine (Lond). 2017;12(19):2319–33.
CAS
Google Scholar
Dzwonek M, Załubiniak D, Piątek P, Cichowicz G, Męczynska-Wielgosz S, Stępkowski T, et al. Towards potent but less toxic nanopharmaceuticals—lipoic acid bioconjugates of ultrasmall gold nanoparticles with an anticancer drug and addressing unit. RSC Adv. 2018;8(27):14947–57.
CAS
Google Scholar
Elkhodiry MA, Husseini GA, Velluto D. Targeting the folate receptor: effects of conjugating folic acid to DOX loaded polymeric micelles. Anticancer Agents Med Chem. 2016;16(10):1275–80.
CAS
Google Scholar
European Cancer Information System. Incidence and mortality estimates 2020. https://ecis.jrc.ec.europa.eu/index.php. Accessed 04 Jan 2021.
Gabka G, Bujak P, Giedyk K, Ostrowski A, Malinowska K, Herbich J, et al. A simple route to alloyed quaternary nanocrystals Ag–In–Zn–S with shape and size control. Inorg Chem. 2014;53(10):5002–12.
CAS
Google Scholar
Gabka G, Bujak P, Kotwica K, Ostrowski A, Lisowski W, Sobczak JW, et al. Luminophores of tunable colors from ternary Ag–In–S and quaternary Ag–In–Zn–S nanocrystals covering the visible to near-infrared spectral range. Phys Chem Chem Phys. 2017;19(2):1217–28.
CAS
Google Scholar
Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol. 2005;16:63–72.
CAS
Google Scholar
Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B. 2001;105:8861–71.
CAS
Google Scholar
Gu Y-J, Cheng J, Man CW-Y, Wong W-T, Cheng SH. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomed Nanotechnol Biol Med. 2012;8(2):204–11.
CAS
Google Scholar
Ha SW, Weiss D, Weitzmann MN, Beck GR. In: Subramani K, Ahmed W, editors. Nanobiomaterials in clinical dentistry. 2nd ed. Amsterdam: Elsevier; 2019. p. 77–112. https://doi.org/10.1016/B978-0-12-815886-9.00004-8.
Chapter
Google Scholar
Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;114(2):165–72.
Google Scholar
Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA. 1998;95:4607–12.
CAS
Google Scholar
Hong Y, Che S, Hui B, Yang Y, Wang X, Zhang X, et al. Lung cancer therapy using doxorubicin and curcumin combination: targeted prodrug based, pH sensitive nanomedicine. Biomed Pharmacother. 2019;112:108614.
CAS
Google Scholar
Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 2004;4(11):2163–9.
CAS
Google Scholar
Hu X, Gao X. Silica-polymer dual layer-encapsulated quantum dots with remarkable stability. ACS Nano. 2010;4(10):6080–6.
CAS
Google Scholar
Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Delivery Rev. 2001;50:107–42.
CAS
Google Scholar
Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007;28(31):4717–32.
CAS
Google Scholar
Jin K-T, Lu Z-B, Chen J-Y, Liu Y-Y, Lan H-R, Dong H-Y, et al. Recent trends in nanocarrier-based targeted chemotherapy: selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. J Nanomaterials. 2020. https://doi.org/10.1155/2020/9184284.
Article
Google Scholar
Jonkman JE, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, et al. An introduction to the wound healing assay using live-cell microscopy. Cell Adhes Migr. 2014;8(5):440–51.
Google Scholar
Jung K, Rezska R. Mitochondria as subcellular targets for clinically useful anthracyclines. Adv Drug Deliv Rev. 2001;49:87–105.
CAS
Google Scholar
Kaaki K, Hervé-Aubert K, Chiper M, Shkilnyy A, Soucé M, Benoit R, et al. Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: relation between coating structure, surface properties, colloidal stability, and cancer cell targeting. Langmuir. 2012;28(2):1496–505.
CAS
Google Scholar
Kanwal U, Bukhari NI, Rana NF, Rehman M, Hussain K, Abbas N, et al. Doxorubicin-loaded quaternary ammonium palmitoyl glycol chitosan polymeric nanoformulation: uptake by cells and organs. Int J Nanomed. 2019;14:1–15.
CAS
Google Scholar
Kharkar PS, Soni G, Rathod V, Shetty S, Gupta MK, Yadav KS. An outlook on procedures of conjugating folate to (co)polymers and drugs for effective cancer targeting. Drug Dev Res. 2020;81(7):1–14.
Google Scholar
Kumar P, Huo P, Liu B. Formulation strategies for folate-targeted liposomes and their biomedical applications. Pharmaceutics. 2019;11(8):381.
CAS
Google Scholar
Kumar A, White J, James Christie R, Dimasi N, Gao C. In: Goodnow RA, editor. Annual reports in medicinal chemistry, vol. 50. Amsterdam: Academic Press; 2017. p. 441–80.
Google Scholar
Lakowicz JR. Principles of fluorescence spectroscopy. Baltimore: Springer; 2010.
Google Scholar
Li L, He S, Yu L, Elshazly EH, Wang H, Chen K, et al. Codelivery of DOX and siRNA by folate-biotin-quaternized starch nanoparticles for promoting synergistic suppression of human lung cancer cells. Drug Deliv. 2019;26(1):499–508.
CAS
Google Scholar
Li N, Ma Y, Yang C, Guo L, Yang X. Interaction of anticancer drug mitoxantrone with DNA analyzed by electrochemical and spectroscopic methods. Biophys Chem. 2005;116(3):199–205.
CAS
Google Scholar
Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: an overview and perspectives (Review). Oncol Rep. 2017;38:611–24.
CAS
Google Scholar
Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329–33.
CAS
Google Scholar
Lin Y-Q, Zhang J, Liu S-J, Ye H. Doxorubicin loaded silica nanoparticles with dual modification as a tumor-targeted drug delivery system for colon cancer therapy. J Nanosci Nanotechnol. 2018;18(4):2330–6.
CAS
Google Scholar
Lovitt CJ, Shelper TB, Avery VM. Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer. 2018;18(1):41.
Google Scholar
Maghsoudnia N, Eftekhari RB, Sohi AN, Zamzami A, Dorkoosh FA. Application of nano-based systems for drug delivery and targeting: a review. J Nanopart Res. 2020;22:245.
CAS
Google Scholar
Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomed. 2017;12:5421–31.
CAS
Google Scholar
Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–44.
CAS
Google Scholar
Oliai Araghi S, Kiefte-de Jong JC, van Dijk SC, Swart KMA, van Laarhoven HW, van Schoor NM, et al. Folic acid and vitamin B12 supplementation and the risk of cancer: long-term follow-up of the B vitamins for the prevention of osteoporotic fractures (B-PROOF) trial. Cancer Epidemiol Biomark Prev. 2019;28(2):275–82.
Google Scholar
Olsztynska S, Komorowska M. Biomedical engineering: trends research and technologies. Lodon: IntechOpen; 2011.
Google Scholar
Patel NR, Piroyan A, Ganta S, Morse AB, Candiloro KM, Solon AL, et al. In vitro and in vivo evaluation of a novel folate-targeted theranostic nanoemulsion of docetaxel for imaging and improved anticancer activity against ovarian cancers. Cancer Biol Ther. 2018;19(7):554–64.
CAS
Google Scholar
Peretz V, Motiei M, Sukenik CN, Popovtzer R. The effect of nanoparticle size on cellular binding probability. J Atom Mol Opt Phys. 2012;2012:1–7.
Google Scholar
Petersen LF, Brockton NT, Bakkar A, Liu S, Wen J, Weljie AM, et al. Elevated physiological levels of folic acid can increase in vitro growth and invasiveness of prostate cancer cells. BJU Int. 2012;109(5):788–95.
CAS
Google Scholar
Peynshaert K, Soenen SJ, Manshian BB, Doak SH, Braeckmans K, De Smedt SC, et al. Coating of quantum dots strongly defines their effect on lysosomal health and autophagy. Acta Biomater. 2017;48:195–205.
CAS
Google Scholar
Pieroth R, Paver S, Day S, Lammersfeld C. Folate and its impact on cancer risk. Curr Nutr Rep. 2018;7(3):70–84.
CAS
Google Scholar
Pilch J, Matysiak-Brynda E, Kowalczyk A, Bujak P, Mazerska Z, Nowicka AM, et al. New unsymmetrical bisacridine derivatives noncovalently attached to quaternary quantum dots improve cancer therapy by enhancing cytotoxicity toward cancer cells and protecting normal cells. ACS Appl Mater Interfaces. 2020;12(15):17276–89.
CAS
Google Scholar
Ponti J, Kinsner-Ovaskainen A, Norlén H, Altmeyer S, Andreoli C, Bogni A, Chevillard S, De Angelis I, Chung S-T, Fujita K, Eom I, Gilliland D, Grollino M, Gulumian M, Hirsch C, Ichiraku K, Igarashi T, Jeong J, Jo E, Kim D-Y, Kaiser J-P, Lagache D, La Spina R, Lee JK, Lee J, Lovera A, Mäder-Althaus X, Nesslany F, Jimenez IO, Pacchierotti F, Pianella F, Paget V, Kim TR, Roszak J, Rosenkranz P, Simar S, Stępnik M, Vetten M, Woong Song N, Yang J-Y, Rossi F. Interlaboratory comparison study of the Colony Forming Efficiency assay for assessing cytotoxicity of nanomaterials. JRC science and policy reports. Report EUR 27009 EN. European Commission. Luxembourg: Publications Office of the European Union; 2014. p. 1–80.
Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK. Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J Am Chem Soc. 1989;111(8):3051–8.
CAS
Google Scholar
Qian F, Li X, Tang L, Lai SK, Lu C, Lau SP. Potassium doping: Tuning the optical properties of graphene quantum dots. AIP Adv. 2016;6(7):075116.
Google Scholar
Qian Z, Ma J, Shan X, Shao L, Zhou J, Chen J, Feng H. Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Adv. 2013;3(34):14571–9.
CAS
Google Scholar
Qiu L, Bi Y, Wang C, Li J, Guo P, Li J, He W, Wang J, Jiang P. Protein a detection based on quantum dots-antibody bioprobe using fluorescence coupled capillary electrophoresis. Int J Mol Sci. 2014;15(2):1804–11.
Google Scholar
Sahoo SL, Liu C-H, Kumari M, Wu W-C, Wang C-C. Biocompatible quantum dot-antibody conjugate for cell imaging, targeting and fluorometric immunoassay: crosslinking, characterization and applications. RSC Advances. 2019;9(56):32791–803.
CAS
Google Scholar
Salahuddin N, Galal A. In: Ficai A, Grumezescu AM, editors. Nanostructures for cancer therapy. Amsterdam: Elsevier; 2017. p. 87–128. https://doi.org/10.1016/B978-0-323-46144-3.00004-0.
Chapter
Google Scholar
Sheng W, Mao H, Wang C, Yang N, Zhang Z, Han J. Dehydrocostus lactone enhances chemotherapeutic potential of doxorubicin in lung cancer by inducing cell death and limiting metastasis. Med Sci Monit Int Med J Exp Clin Res. 2018;24:7850–61.
CAS
Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. Cancer J Clin. 2020;70(1):7–30.
Google Scholar
Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013;71:555–64.
CAS
Google Scholar
Sosnik A. Chapter 1 from the “Magic Bullet” to advanced nanomaterials for active targeting in diagnostics and therapeutics. In: Sarmento B, Das Neves J, editors. Biomedical applications of functionalized nanomaterials. Amsterdam: Elsevier; 2018. p. 1–32.
Google Scholar
Stanishevsky AV, Styres C, Yockell-Lelievre H, Yusuf N. Nanostructured carbon beads–properties and biomedical applications. J Nanosci Nanotechnol. 2011;11(10):8705–11.
CAS
Google Scholar
Stice SA, Beedanagari SR, Vulimiri SV, Bhatia SP, Mahadevan B. In: Gupta RC, editor. Biomarkers in toxicology. 2nd ed. London: Academic Press; 2019. p. 807–21. https://doi.org/10.1016/B978-0-12-814655-2.00044-X.
Chapter
Google Scholar
Susumu K, Mei BC, Mattoussi H. Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat Protoc. 2009;4(3):424–36.
CAS
Google Scholar
Takara K, Sakaeda T, Okumura K. An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Curr Pharm Des. 2006;12(3):273–86.
CAS
Google Scholar
Thomas GJ Jr, Kyogoku Y. In: Brame EG, Grasselli JG, editors. Infrared and Raman spectroscopy, Part C, vol. 1. New York: Marcel Dekker Inc; 1977. p. 717–872.
Google Scholar
Verma J, Lal S, Van Noorden CJ. Inorganic nanoparticles for the theranostics of cancer. Eur J Nanomed. 2015;7:271–87.
Google Scholar
Wakharde AA, Awad AH, Bhagat A, Karuppayil SM. Synergistic activation of doxorubicin against cancer: a review. Am J Clin Microbiol Antimicrob. 2018;1(2):1009.
Google Scholar
Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev. 2015;44(14):4792–834.
CAS
Google Scholar
Xu C, Wang Y, Guo Z, Chen J, Lin L, Wu J, et al. Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. J Control Release. 2019;295:153–63.
CAS
Google Scholar
Yuan M, Huang L-L, Chen J-H, Wu J, Xu Q. The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduct Target Ther. 2019;4(1):61.
Google Scholar
Yue PY, Leung EP, Mak NK, Wong RN. J Biomol Screen. 2010;15:427.
CAS
Google Scholar
Zhang J, Rana S, Srivastava RS, Misra RDK. On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomater. 2008;4(1):40–8.
CAS
Google Scholar
Zhang J, Zhao X, Xian M, Dong C, Shuang S. Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta. 2018;183:39–47.
CAS
Google Scholar
Zhao S, Sun S, Jiang K, Wang Y, Liu Y, Wu S, et al. In situ synthesis of fluorescent mesoporous silica–carbon dot nanohybrids featuring folate receptor-overexpressing cancer cell targeting and drug delivery. Nano-Micro Lett. 2019;11:32.
CAS
Google Scholar
Zhong W, Yu JS, Huang W, Ni K, Liang Y. Spectroscopic studies of interaction of chlorobenzylidine with DNA. Biopolymers. 2001;62(6):315–23.
CAS
Google Scholar
Zhou J, Liu Y, Tang J, Tang W. Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications. Mater Today. 2017;20(7):360–76.
CAS
Google Scholar