Agostinelli S. GEANT4: simulation toolkit. Nuclear Instrum Methods Phys Res Sect A. 2003;506(3):250–303.
Article
CAS
Google Scholar
Ahnesjö A, Aspradakis MM. Dose calculations for external photon beams in radiotherapy. Phys Med Biol. 1999;44(11):R99–155.
Article
Google Scholar
Al Zaki A, Joh D, Cheng Z, De Barros ALB, Kao G, Dorsey J, Tsourkas A. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. Acs Nano. 2014;8(1):104–12.
Article
Google Scholar
Allison J. Geant4 developments and applications. IEEE Trans Nuclear Sci. 2006;53(1):270–8.
Article
Google Scholar
Allison J. Recent developments in Geant4. Nuclear Instrum Methods Phys Res Sect A. 2016;835:186–225.
Article
CAS
Google Scholar
Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, Belderbos J, Clamon G, Ulutin HC, Paulus R, Yamanaka T. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(13):2181–90.
Article
Google Scholar
Bobyk L, Edouard M, Deman P, Vautrin M, Pernet-Gallay K, Delaroche J, Adam JF, Estève F, Ravanat JL, Elleaume H. Photoactivation of gold nanoparticles for glioma treatment, nanomedicine: nanotechnology. Biol Med. 2013;9(7):1089–97.
CAS
Google Scholar
Brown JMC, Currell FJ. A local effect model-based interpolation framework for experimental nanoparticle radiosensitisation data. Cancer Nanotechnol. 2017;8:1.
Article
CAS
Google Scholar
Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998;58(7):1408–16.
CAS
Google Scholar
Calitchi E, Kirova YM, Otmezguine Y, Feuilhade F, Piedbois Y, Le Bourgeois JP. Long-term results of neoadjuvant radiation therapy for breast cancer. Int J Cancer. 2001;96(4):253–9.
Article
CAS
Google Scholar
Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev. 2016;116(5):2826–85.
Article
CAS
Google Scholar
Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RB, Hill RP, Jaffray DA. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res. 2010;173(6):719–28.
Article
CAS
Google Scholar
Cho SH. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol. 2005;50(15):N163.
Article
Google Scholar
Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104(6):1129–37.
Article
Google Scholar
Douglas BG, Fowler JF. The effect of multiple small doses of X-rays on skin reactions in the mouse and a basic interpretation. Radiat Res. 1976;66(2):401–26.
Article
CAS
Google Scholar
Ferrero V, Visonà G, Dalmasso F, Gobbato A, Cerello P, Strigari L, Visentin S, Attili A. Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 1: a radiobiological model study. Med Phys. 2017;44(5):1983–92.
Article
CAS
Google Scholar
Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49(18):N309–15.
Article
CAS
Google Scholar
Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79(939):248–53.
Article
CAS
Google Scholar
Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol. 2008;60(8):977–85.
Article
CAS
Google Scholar
Hainfeld JF, O’Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ, Smilowit HM. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol. 2011;84:526–33.
Article
CAS
Google Scholar
Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev. 2017;109:84–101.
Article
CAS
Google Scholar
International Commission on Radiation Units and Measurements. ICRU report 44: tissue substitutes in radiation dosimetry and measurement. MD, USA: Bethesda; 1989.
International Commission on Radiation Units and Measurements. ICRU report 49: stopping power and ranges for Protons and Alpha particles. MD, USA: Bethesda; 1994.
Jain S, Coulter JA, Hounsell AR, Butterworth KT, McMahon SJ, Hyland WB, Muir ME, Dickson GR, Prise KM, Currell EJ, O’Sullivan JM, Hirst DG. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys. 2011;79(2):531–9.
Article
CAS
Google Scholar
Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2012;85:101–13.
Article
CAS
Google Scholar
Joiner M, van der Kogel A. Basic clinical radiobiological. 4th ed. Boca Raton: CRC Press, Taylor & Francis Group; 2009.
Google Scholar
Jones BL, Krishnan S, Cho SH. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med Phys. 2010;37(7):3809–16.
Article
CAS
Google Scholar
Lechtman E, Mashouf S, Chattopadhyay N, Keller BM, Lai P, Cai Z, Reilly RM, Pignol JP. A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness. Phys Med Biol. 2013;58(10):3075–87.
Article
CAS
Google Scholar
Lin Y, McMahon SJ, Scarpelli M, Paganetti H, Schuemann J. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Phys Med Biol. 2014;59(24):7675–89.
Article
Google Scholar
Liu CJ, Wang CH, Chen ST, Chen HH, Leng WH, Chien CC, Wang CL, Kempson IM, Hwu Y, Lai TC, Hsiao M. Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol. 2010;55(4):931–45.
Article
CAS
Google Scholar
Maeda H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release. 2012;164(2):138–44.
Article
CAS
Google Scholar
Marples B, Dhar S. Radiobiology and the renewed potential for nanoparticles. Int J Radiat Oncol Biol Phys. 2017;98(3):489–91.
Article
Google Scholar
Mayles P, Nahum A, Rosenwald J-C. Handbook of radiotherapy physics: theory and practice. New York: CRC Press, Taylor & Francis Group; 2007.
Book
Google Scholar
McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, Schettino G, Dickson GR, Hounsell AR, O’Sullivan JM, Prise KM, Hirst DG, Currell FJ. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep. 2011;1:18.
Article
Google Scholar
Metcalfe PE, Hoban PW, Murray DC, Round WH. Beam hardening of 10 MV radiotherapy X-rays: analysis using a convolution/superposition method. Phys Med Biol. 1990;35(11):1533–49.
Article
CAS
Google Scholar
Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–92.
Article
CAS
Google Scholar
National Institutes of Health (USA). ClinicalTrials.gov. https://clinicaltrials.gov/. Accessed Dec 2016.
Ngwa W, Makrigiorgos GM, Berbeco RI. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement. Phys Med Biol. 2010;55(21):6533–48.
Article
Google Scholar
Nicol J. Radiation dose enhancement: the development and application of radiosensitising gold nanoparticles, Doctoral Dissertation, Queen’s University Belfast. United Kingdom: Northern Ireland; 2016.
Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, Davidson R, Geso M. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy, nanomedicine: nanotechnology. Biol Med. 2009;5(2):136–42.
CAS
Google Scholar
Riet FG, Fayard F, Arriagada R, Santos MA, Bourgier C, Ferchiou M, Heymann S, Delaloge S, Mazouni C, Dunant A, Rivera S. Preoperative radiotherapy in breast cancer patients: 32 years of follow-up. Eur J Cancer. 2017;76:45–51.
Article
CAS
Google Scholar
Roeske JC, Nuñez L, Hoggarth M, Labay E, Weichselbaum RR. Characterization of the theoretical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat. 2007;6(5):395–401.
Article
Google Scholar
Sancey L, Lux E, Kotb S, Roux S, Dufort S, Bianchi A, Cremillieux Y, Fries P, Coll JL, Rodriguez-Lafrasse C, Janier M. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol. 2014;87(1041):20140134.
Article
CAS
Google Scholar
Schuemann J, Berbeco R, Chithrani DB, Cho SH, Kumar R, McMahon SJ, Sridhar S, Krishnan S. Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int J Radiat Oncol Biol Phys. 2016;94(1):189–205.
Article
Google Scholar
Sheikha-Bagheri D, Rogers DWO. Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code. Med Phys. 2002;29(3):391–402.
Article
Google Scholar
Sicard-Roselli C, Brun E, Gilles M, Baldacchino G, Kelsey C, McQuaid H, Polin C, Wardlow N, Currell F. A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions. Small. 2014;10(16):3338–46.
Article
CAS
Google Scholar
Strigari L, Ferrero V, Visonà G, Dalmasso F, Gobbato A, Cerello P, Visentin S, Attili A. Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 2: a treatment planning study. Med Phys. 2017;44(5):1993–2001.
Article
CAS
Google Scholar
Tran HN, Karamitros M, Ivanchenko VN, Guatelli S, McKinnon S, Murakami K, Sasaki T, Okada S, Bordage MC, Francis Z, El Bitar Z, Bernal MA, Shin JI, Lee SB, Barberet Ph, Tran TT, Brown JMC, Nhan Hao IV, Incerti S. Geant4 Monte Carlo simulation of absorbed dose and radiolysis yields enhancement from a gold nanoparticle under MeV proton irradiation. Nuclear Instrum Methods Phys Res Sect B. 2016;373:126–39.
Article
CAS
Google Scholar
Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, Capella G. Recent advances in cancer therapy: an overview. Curr Pharm Des. 2010;16(1):3–10.
Article
CAS
Google Scholar
Wilkens JJ, Oelfke U. A phenomenological model for the relative biological effectiveness in therapeutic proton beams. Phys Med Biol. 2004;49(13):2811–25.
Article
CAS
Google Scholar