Baek SK, Makkouk AR, Krasieva T, et al. Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol. 2011. https://doi.org/10.1007/s11060-010-0511-3.
Article
Google Scholar
Bender FC, Reymond MA, Bron C, Quest AFG. Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res. 2000;60:5870–8.
CAS
Google Scholar
Bennett R, Yakkundi A, McKeen HD, et al. RALA-mediated delivery of FKBPL nucleic acid therapeutics. Nanomedicine. 2015;10:1–30. https://doi.org/10.2217/nnm.15.115.
Article
CAS
Google Scholar
Bishop KJM, Wilmer CE, Soh S, Grzybowski BA. Nanoscale forces and their uses in self-assembly. Small. 2009;5:1600–30.
Article
CAS
Google Scholar
Botchway SW, Coulter JA, Currell FJ. Imaging intracellular and systemic in vivo gold nanoparticles to enhance radiotherapy. Br J Radiol. 2015;88:1–13. https://doi.org/10.1259/bjr.20150170.
Article
Google Scholar
Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc. 2010;132:4678–84. https://doi.org/10.1021/ja908117a.
Article
CAS
Google Scholar
Burroughs SK, Kaluz S, Wang D, et al. Hypoxia inducible factor pathway inhibitors as anticancer therapeutics. Future Med Chem. 2013;5:553–72. https://doi.org/10.4155/fmc.13.17.
Article
CAS
Google Scholar
Cathcart J, Pulkoski-Gross A, Cao J. Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis. 2015;2:26–34.
Article
CAS
Google Scholar
Cheng W, Nie J, Xu L, et al. A pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl Mater Interfaces. 2017. https://doi.org/10.1021/acsami.7b02457.
Article
Google Scholar
Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, Hill RP, Jaffray DA (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173(6):719–728. https://doi.org/10.1667/RR1984.1
Article
CAS
Google Scholar
Cruje C, Chithrani BD (2015) Integration of peptides for enhanced uptake of PEGylayed gold nanoparticles. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2015.10321
Article
Google Scholar
Coulter JA, Hyland WB, Nicol J, Currell FJ. Radiosensitising nanoparticles as novel cancer therapeutics—pipe dream or realistic prospect? Clin Oncol. 2013;25:593–603. https://doi.org/10.1016/j.clon.2013.06.011.
Article
CAS
Google Scholar
Cox AD, Fesik SW, Kimmelman AC, et al. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov. 2014;13:828–51. https://doi.org/10.1038/nrd4389.
Article
CAS
Google Scholar
Dai Y, Bae K, Siemann DW. Impact of hypoxia on the metastatic potential of human prostate cancer cells. Int J Radiat Oncol. 2011;81:521–8. https://doi.org/10.1016/j.ijrobp.2011.04.027.
Article
Google Scholar
Deshayes S, Morris MC, Divita G, Heitz F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci. 2005;62:1839–49. https://doi.org/10.1007/s00018-005-5109-0.
Article
CAS
Google Scholar
Dixit S, Novak T, Miller K, et al. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale. 2015;7:1782–90. https://doi.org/10.1039/C4NR04853A.
Article
CAS
Google Scholar
Erler JT, Bennewith KL, Nicolau M, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006;440:1222–6. https://doi.org/10.1038/nature04695.
Article
CAS
Google Scholar
Fais S, Venturi G, Gatenby B. Microenvironmental acidosis in carcinogenesis and metastases: new strategies in prevention and therapy. Cancer Metastasis Rev. 2014;33:1095–108. https://doi.org/10.1007/s10555-014-9531-3.
Article
CAS
Google Scholar
Feuerecker B, Seidl C, Pirsig S, et al. DCA promotes progression of neuroblastoma tumors in nude mice. Am J Cancer Res. 2015;5:812–20.
CAS
Google Scholar
Gao X, Zhang J, Huang Z, et al. Reducing interstitial fluid pressure and inhibiting pulmonary metastasis of breast cancer by gelatin modified cationic lipid nanoparticles. ACS Appl Mater Interfaces. 2017;9:29457–68. https://doi.org/10.1021/acsami.7b05119.
Article
CAS
Google Scholar
Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278:16–27.
Article
CAS
Google Scholar
Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol Semin Orig Invest. 2008;26:57–64.
CAS
Google Scholar
Hamdan FH, Zihlif MA. Gene expression alterations in chronic hypoxic MCF7 breast cancer cell line. Genomics. 2014;104:477–81. https://doi.org/10.1016/j.ygeno.2014.10.010.
Article
CAS
Google Scholar
Hanahan D, Weinberg RA. Review hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.
Article
CAS
Google Scholar
Hatakeyama H, Akita H, Kogure K, Harashima H. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Yakugaku Zasshi. 2007;127:1549–56. https://doi.org/10.1248/yakushi.127.1549.
Article
CAS
Google Scholar
Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol. 2009;157:195–206.
Article
CAS
Google Scholar
Heldin CH, Rubin K, Pietras K, Östman A. High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer. 2004;4:806–13.
Article
CAS
Google Scholar
Hill MM, Bastiani M, Luetterforst R, et al. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell. 2008;132:113–24. https://doi.org/10.1016/j.cell.2007.11.042.
Article
CAS
Google Scholar
Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:1–14. https://doi.org/10.3389/fphar.2018.00790.
Article
Google Scholar
Huanwen W, Zhiyong L, Xiaohua S, et al. Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Mol Cancer. 2009;8:125. https://doi.org/10.1186/1476-4598-8-125.
Article
CAS
Google Scholar
Kanapathipillai M, Mammoto A, Mammoto T, et al. Inhibition of mammary tumor growth using lysyl oxidase-targeting nanoparticles to modify extracellular matrix. Nano Lett. 2012;12:3213–7. https://doi.org/10.1021/nl301206p.
Article
CAS
Google Scholar
Kato Y, Ozawa S, Miyamoto C, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13:89. https://doi.org/10.1186/1475-2867-13-89.
Article
CAS
Google Scholar
Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2014;4:81–9. https://doi.org/10.7150/thno.7193.
Article
CAS
Google Scholar
Kumar D, Mutreja I, Meenan BJ, Dixon D. The profile of payload release from gold nanoparticles modified with a bodipy®/peg mixed monolayer. J Nano Res. 2013. https://doi.org/10.4028/www.scientific.net/JNanoR.25.16.
Article
Google Scholar
Li H, Yu SS, Miteva M, et al. Matrix metalloproteinase responsive, proximity-activated polymeric nanoparticles for siRNA delivery. Adv Funct Mater. 2013;23:3040–52. https://doi.org/10.1002/adfm.201202215.
Article
CAS
Google Scholar
Li HJ, Du JZ, Liu J, et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano. 2016;10:6753–61. https://doi.org/10.1021/acsnano.6b02326.
Article
CAS
Google Scholar
Li W, Nicol F, Szoka FC. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev. 2004;56:967–85. https://doi.org/10.1016/j.addr.2003.10.041.
Article
CAS
Google Scholar
Liu D, He C, Wang AZ, Lin W. Application of liposomal technologies for delivery of platinum analogs in oncology. Int J Nanomed. 2013. https://doi.org/10.2147/IJN.S38354.
Article
Google Scholar
Liu XQ, Xiong MH, Shu XT, et al. Therapeutic delivery of siRNA silencing HIF-1 alpha with micellar nanoparticles inhibits hypoxic tumor growth. Mol Pharm. 2012;9:2863–74. https://doi.org/10.1021/mp300193f.
Article
CAS
Google Scholar
Liu Y, Shipton MK, Ryan J, et al. Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide-poly(ethylene glycol) monolayers. Anal Chem. 2007;79:2221–9. https://doi.org/10.1021/ac061578f.
Article
CAS
Google Scholar
Loughran SP, McCrudden CM, McCarthy HO. Designer peptide delivery systems for gene therapy. Eur J Nanomedicine. 2015;7:85–96. https://doi.org/10.1515/ejnm-2014-0037.
Article
CAS
Google Scholar
Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406.
Article
CAS
Google Scholar
Marino ML, Fais S, Djavaheri-Mergny M, et al. Proton pump inhibition induces autophagy as a survival mechanism following oxidative stress in human melanoma cells. Cell Death Dis. 2010;1:e87. https://doi.org/10.1038/cddis.2010.67.
Article
CAS
Google Scholar
Massey AS, Pentlavalli S, Cunningham R, et al. Potentiating the anticancer properties of bisphosphonates by nanocomplexation with the cationic amphipathic peptide, RALA. Mol Pharm. 2016;13:1217–28. https://doi.org/10.1021/acs.molpharmaceut.5b00670.
Article
CAS
Google Scholar
Mayorca-Guiliani A, Erler JT. The potential for targeting extracellular LOX proteins in human malignancy. Onco Targets Ther. 2013;6:1729–35. https://doi.org/10.2147/OTT.S38110.
Article
CAS
Google Scholar
Mccarthy HO, McCaffrey J, Mccrudden CM, et al. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J Control Release. 2014;189:141–9. https://doi.org/10.1016/j.jconrel.2014.06.048.
Article
CAS
Google Scholar
McErlean EM, McCrudden CM, McCarthy HO. Delivery of nucleic acids for cancer gene therapy: overcoming extra- and intra-cellular barriers. Ther Deliv. 2016;7:619–37. https://doi.org/10.4155/tde-2016-0049.
Article
CAS
Google Scholar
McQuaid HN, Muir MF, Taggart LE, et al. Imaging and radiation effects of gold nanoparticles in tumour cells. Sci Rep. 2016. https://doi.org/10.1038/srep19442.
Article
Google Scholar
Mitchell DJ, Kim DT, Steinman L, et al. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res. 2000;56:318–25. https://doi.org/10.1034/j.1399-3011.2000.00723.x.
Article
CAS
Google Scholar
Mukherjee P, Bhattacharya R, Wang P, et al. Cancer therapy: preclinical antiangiogenic properties of gold nanoparticles. Clin Cancer Res. 2005;11:3530–5.
Article
CAS
Google Scholar
Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27:2225–38.
Article
CAS
Google Scholar
Nakase I, Konishi Y, Ueda M, et al. Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. J Control Release. 2012;159:181–8. https://doi.org/10.1016/j.jconrel.2012.01.016.
Article
CAS
Google Scholar
Ngoune R, Peters A, von Elverfeldt D, et al. Accumulating nanoparticles by EPR: a route of no return. J Control Release. 2016;238:58–70. https://doi.org/10.1016/j.jconrel.2016.07.028.
Article
CAS
Google Scholar
Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther. 2002;9:1647–52. https://doi.org/10.1038/sj.gt.3301923.
Article
CAS
Google Scholar
Omidi Y, Barar J. Targeting tumor microenvironment: crossing tumor interstitial fluid by multifunctional nanomedicines. BioImpacts. 2014;4:55–67.
Google Scholar
Pan B, Chen D, Huang J, et al. HMGB1-mediated autophagy promotes docetaxel resistance in human lung adenocarcinoma. Mol Cancer. 2014;13:165. https://doi.org/10.1186/1476-4598-13-165.
Article
CAS
Google Scholar
Pang L, Qin J, Han L, et al. Exploiting macrophages as targeted carrier to guide nanoparticles into glioma. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.9464.
Article
Google Scholar
Perez-Soler R, Khokhar AR, Lopez-Berestein G. Treatment and prophylaxis of experimental liver metastases of M5076 reticulosarcoma with cis-bis-neodecanoato-trans-R, R-1,2-diaminocyclohexaneplatinum (II) encapsulated in multilamellar vesicles. Cancer Res. 1987;47:6462–6.
CAS
Google Scholar
Pirollo KF, Nemunaitis J, Leung PK, et al. Safety and efficacy in advanced solid tumors of a targeted nanocomplex carrying the p53 gene used in combination with docetaxel: a phase 1b study. Mol Ther. 2016;24:1697–706. https://doi.org/10.1038/mt.2016.135.
Article
CAS
Google Scholar
Rockwell S, Dobrucki IT, Kim EY, et al. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med. 2009;9:442–58. https://doi.org/10.2174/156652409788167087.
Article
CAS
Google Scholar
Rofstad EK, Mathiesen B, Kindem K, Galappathi K. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res. 2006;66:6699–707. https://doi.org/10.1158/0008-5472.CAN-06-0983.
Article
CAS
Google Scholar
Salnikov AV, Iversen VV, Koisti M, et al. Lowering of tumor interstitial fluid pressure specifically augments efficacy of chemotherapy. FASEB J. 2003;17:1756–8. https://doi.org/10.1096/fj.02-1201fje.
Article
CAS
Google Scholar
Schellekens H, Hennink WE, Brinks V. The immunogenicity of polyethylene glycol: facts and fiction. Pharm Res. 2013;30:1729–34.
Article
CAS
Google Scholar
Senzer N, Nemunaitis J, Nemunaitis D, et al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther. 2013;21:1096–103. https://doi.org/10.1038/mt.2013.32.
Article
CAS
Google Scholar
Sigal A, Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 2000;60:6788–93.
CAS
Google Scholar
Swietach P, Hulikova A, Patiar S, Vaughan-Jones RD, Harris AL (2012) Importance of intracellular pH in determining the uptake and efficacy of the weakly basic chemotherapeutic drug, doxorubicin. PLoS ONE 7(4):e35949. https://doi.org/10.1371/journal.pone.0035949
Article
CAS
Google Scholar
Thambi T, Deepagan VG, Yoon HY, et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials. 2014;35:1735–43. https://doi.org/10.1016/j.biomaterials.2013.11.022.
Article
CAS
Google Scholar
Van Rijt SH, Bölükbas DA, Argyo C, et al. Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors. ACS Nano. 2015;9:2377–89. https://doi.org/10.1021/nn5070343.
Article
CAS
Google Scholar
Vartak DG, Gemeinhart RA. Matrix metalloproteases: underutilized targets for drug delivery. J Drug Target. 2007;15:1–20.
Article
CAS
Google Scholar
Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6:12–21.
Article
CAS
Google Scholar
Welsh S, Williams R, Kirkpatrick L, et al. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol Cancer Ther. 2004;3:233–44. https://doi.org/10.4161/cbt.3.2.775.
Article
CAS
Google Scholar
Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014.
Article
CAS
Google Scholar
Zhang H, Wang L, Yuan B, et al. Effect of receptor structure and length on the wrapping of a nanoparticle by a lipid membrane. Materials (Basel). 2014;7:3855–66. https://doi.org/10.3390/ma7053855.
Article
CAS
Google Scholar
Zhang X, Liu L, Wei X, et al. Impaired angiogenesis and mobilization of circulating angiogenic cells in HIF-1α heterozygous-null mice after burn wounding. Wound Repair Regen. 2010;18:193–201. https://doi.org/10.1111/j.1524-475X.2010.00570.x.
Article
CAS
Google Scholar
Zhao G, Long L, Zhang L, et al. Smart pH-sensitive nanoassemblies with cleavable PEGylation for tumor targeted drug delivery. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-03111-2.
Article
Google Scholar
Zwicke GL, Mansoori GA, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012;3:1–17. https://doi.org/10.3402/nano.v3i0.18496.
Article
CAS
Google Scholar