Abdelhamid MA, Fábián L, MacDonald CJ, Cheesman MR, Gates AJ, Waller ZA. Redox-dependent control of i-Motif DNA structure using copper cations. Nucleic Acids Res. 2018;46(12):5886–93.
Article
CAS
Google Scholar
Algethami M. Radiation dose enhancement using Bi2S3 nanoparticles in cultured mouse PC3 prostate and B16 melanoma cells. NanoWorld J. 2015;1(3):99–104.
Article
Google Scholar
Altomare A, Corriero N, Cuocci C, Falcicchio A, Moliterni A, Rizzi R. QUALX2.0: a qualitative phase analysis software using the freely available database POW-COD. J. Appl. Crystallogr. 2015;48(2):598–603.
Article
CAS
Google Scholar
Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, et al. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol. 2012;46(3):1819–27.
Article
CAS
Google Scholar
Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1–2):48–60.
Article
CAS
Google Scholar
Baskar R, Dai J, Wenlong N, Yeo R, Yeoh K-W. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1:24. https://doi.org/10.3389/fmolb.2014.00024.
Article
CAS
Google Scholar
Carrasco-Flores EA, LaVerne JA. Surface species produced in the radiolysis of zirconia nanoparticles. J Chem Phys. 2007;127(23):234703.
Article
CAS
Google Scholar
Cervantes-Cervantes MP, Calderón-Salinas JV, Albores A, Muñoz-Sánchez JL. Copper increases the damage to DNA and proteins caused by reactive oxygen species. Biol Trace Elem Res. 2005;103(3):229–48.
Article
CAS
Google Scholar
Chelnokov E, Cuba V, Simeone D, Guigner J-M, Schmidhammer U, Mostafavi M, et al. Electron transfer at oxide/water interfaces induced by ionizing radiation. J Phys Chem C. 2014;118(15):7865–73.
Article
CAS
Google Scholar
Chu S-H, Karri S, Ma Y-B, Feng D-F, Li Z-Q. In vitro and in vivo radiosensitization induced by hydroxyapatite nanoparticles. Neuro Oncol. 2013;15(7):880–90.
Article
CAS
Google Scholar
David Gara PM, Garabano NI, Llansola Portoles MJ, Moreno MS, Dodat D, Casas OR, et al. ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. J Nanoparticle Res. 2012;14(3):741.
Article
CAS
Google Scholar
Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, et al. Time-resolved atomic inner-shell spectroscopy. Nature. 2002;419:803–7.
Article
CAS
Google Scholar
Du G, Espenson JH. Oxidation of Vanadium(III) by hydrogen peroxide and the oxomonoperoxo vanadium(V) Ion in acidic aqueous solutions: a kinetics and simulation study. Inorg Chem. 2005;44(15):5514–22.
Article
CAS
Google Scholar
Generalov R, Kuan WB, Chen W, Kristensen S, Juzenas P. Radiosensitizing effect of zinc oxide and silica nanocomposites on cancer cells. Colloids Surf B Biointerfaces. 2015;129:79–86.
Article
CAS
Google Scholar
Ghaemi B, Mashinchian O, Mousavi T, Karimi R, Kharrazi S, Amani A. Harnessing the cancer radiation therapy by Lanthanide-doped zinc oxide based theranostic nanoparticles. ACS Appl Mater Interfaces. 2016;8(5):3123–34.
Article
CAS
Google Scholar
Gilles M, Brun E, Sicard-Roselli C. Gold nanoparticles functionalization notably decreases radiosensitization through hydroxyl radical production under ionizing radiation. Colloids Surf B Biointerfaces. 2014;123:770–7.
Article
CAS
Google Scholar
Gilles M, Brun E, Sicard-Roselli C. Quantification of hydroxyl radicals and solvated electrons produced by irradiated gold nanoparticles suggests a crucial role of interfacial water. J Colloid Interface Sci. 2018;525:31–8.
Article
CAS
Google Scholar
Grellet S, Tzelepi K, Roskamp M, Williams P, Sharif A, Slade-Carter R, et al. Cancer-selective, single agent chemoradiosensitising gold nanoparticles. PLoS ONE. 2017;12(7):e0181103.
Article
CAS
Google Scholar
Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV, et al. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol. 2016;7(1):8.
Article
CAS
Google Scholar
Huang Y-W, Cambre M, Lee H-J. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci. 2017;18(12):2702.
Article
CAS
Google Scholar
Hwang C, Kim JM, Kim J. Influence of concentration, nanoparticle size, beam energy, and material on dose enhancement in radiation therapy. J Radiat Res. 2017;58(4):405–11.
Article
CAS
Google Scholar
Jayakumar S, Kunwar A, Sandur SK, Pandey BN, Chaubey RC. Differential response of DU145 and PC3 prostate cancer cells to ionizing radiation: role of reactive oxygen species, GSH and Nrf2 in radiosensitivity. Biochim Biophys Acta. 2014;1840(1):485–95.
Article
CAS
Google Scholar
Jiang YW, Gao G, Jia HR, Zhang X, Zhao J, Ma N, et al. copper oxide nanoparticles induce enhanced radiosensitizing effect via destructive autophagy. ACS Biomater Sci Eng. 2019;5(3):1569–79.
Article
CAS
Google Scholar
Khoei S, Mahdavi SR, Fakhimikabir H, Shakeri-Zadeh A, Hashemian A. The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. Int J Radiat Biol. 2014;90(5):351–6.
Article
CAS
Google Scholar
Konefal A, Bakoniak M, Orlef A, Maniakowski Z, Szewczuk M. Energy spectrum in water for the 6 MV X-ray therapeutic beam generated by Clinac-2300 linac. Radiat Meas. 2015;72:12–22.
Article
CAS
Google Scholar
Kuncic Z, Lacombe S. Nanoparticle radio-enhancement: Principles, progress and application to cancer treatment. Phys Med Biol. 2018;63(2):02TR01.
Article
CAS
Google Scholar
Le Caër S. Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water Mol Divers Preserv Int. 2011;3(4):235–53.
Google Scholar
Liu R. Adsorption and dissociation of H2O on Au(111) surface: a DFT study. Comput Theor Chem. 2013;1019(1):141–5.
Article
CAS
Google Scholar
Liu P, Jin H, Guo Z, Ma J, Zhao J, Li D, et al. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. Int J Nanomed. 2016;11:5003–14.
Article
CAS
Google Scholar
Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, et al. Metal-based NanoEnhancers for future radiotherapy: radiosensitizing and synergistic effects on tumor cells. Theranostics. 2018;8(7):1824–49.
Article
CAS
Google Scholar
Lousada CM, Johansson AJ, Brinck T, Jonsson M. Reactivity of metal oxide clusters with hydrogen peroxide and water—a DFT study evaluating the performance of different exchange-correlation functionals. Phys Chem Chem Phys. 2013;15(15):5539–52.
Article
CAS
Google Scholar
Luchette M, Korideck H, Makrigiorgos M, Tillement O, Berbeco R. Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells. Nanomed Nanotechnol Biol Med. 2014;10(8):1751–5.
Article
CAS
Google Scholar
Lux F, Tran VL, Thomas E, Dufort S, Rossetti F, Martini M, et al. AGuIX® from bench to bedside—Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. Br J Radiol. 2018. https://doi.org/10.1259/bjr.20180365.
Article
Google Scholar
Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:e942916.
Article
CAS
Google Scholar
Marill J, Anesary N, Zhang P, Vivet S, Borghi E, Levy L, et al. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect? Radiat Oncol. 2014;9(1):150.
Article
CAS
Google Scholar
McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, et al. Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother Oncol. 2011;100(3):412–6.
Article
CAS
Google Scholar
McMahon SJ, Paganetti H, Prise KM. Optimising element choice for nanoparticle radiosensitisers. Nanoscale. 2016;8(1):581–9.
Article
CAS
Google Scholar
Morrison R, Rybak-Smith M, Thompson J, Thiebaut B, Hill M, Townley H. Efficacy of radiosensitizing doped titania nanoparticles under hypoxia and preparation of an embolic microparticle. Int J Nanomed. 2017;12:3851–63.
Article
CAS
Google Scholar
Muhammad MA, Rashid RA, Lazim RM, Dollah N, Razak KA, Rahman WN. Evaluation of radiosensitization effects by platinum nanodendrites for 6 MV photon beam radiotherapy. Radiat Phys Chem. 2018;150:40–5.
Article
CAS
Google Scholar
Nakayama M, Sasaki R, Ogino C, Tanaka T, Morita K, Umetsu M, et al. Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiat Oncol. 2016;11(1):91.
Article
CAS
Google Scholar
Petrik NG, Alexandrov AB, Vall AI. Interfacial energy transfer during gamma radiolysis of water on the surface of ZrO2 and some other oxides. J Phys Chem B. 2001;105(25):5935–44.
Article
CAS
Google Scholar
Puangpetch T, Chavadej S, Sreethawong T. Hydrogen production over Au-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalyst: effects of molecular structure and chemical properties of hole scavengers. Energy Convers Manag. 2011;52(5):2256–61.
Article
CAS
Google Scholar
Rahman WN, Corde S, Yagi N, Abdul Aziz SA, Annabell N, Geso M. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. Int J Nanomed. 2014;9:2459–67.
Article
Google Scholar
Retif P, Pinel S, Toussaint M, Frochot C, Chouikrat R, Bastogne T, et al. Nanoparticles for radiation therapy enhancement: the key parameters. Theranostics. 2015;5(9):1030–44.
Article
CAS
Google Scholar
Richmond R, Halliwell B, Chauhan J, Darbre A. Superoxide-dependent formation of hydroxyl radicals: detection of hydroxyl radicals by the hydroxylation of aromatic compounds. Anal Biochem. 1981;118(2):328–35.
Article
CAS
Google Scholar
Rim KT, Koo KH, Park JS. Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Saf Health Work. 2013;4(1):12–26.
Article
CAS
Google Scholar
Rodnyi PA. Physical processes in inorganic scintillators. CRC Press; 1997. ISBN:9780849337888—CAT# 3788.
Roeske JC, Nunez L, Hoggarth M, Labay E, Weichselbaum RR. Characterization of the theoretical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat. 2007;6(5):395–401.
Article
Google Scholar
Roth O, Hiroki A, LaVerne JA. Effect of Al2O3 nanoparticles on radiolytic H2O2 production in water. J Phys Chem C. 2011;115(16):8144–9.
Article
CAS
Google Scholar
Saenko Y, Cieslar-Pobuda A, Skonieczna M, Rzeszowska-Wolny J. Changes of Reactive oxygen and nitrogen species and mitochondrial functioning in human K562 and HL60 cells exposed to ionizing radiation. Radiat Res. 2013;180(4):360–6.
Article
CAS
Google Scholar
Sahu SP, Cates EL. X-ray radiocatalytic activity and mechanisms of bismuth complex oxides. J Phys Chem C. 2017;121(19):10538–45.
Article
CAS
Google Scholar
Saito I, Matsuura T, Inoue K. Formation of superoxide ion via one-electron transfer from electron donors to singlet oxygen. J Am Chem Soc. 1983;105(10):3200–6.
Article
CAS
Google Scholar
Schuemann J, McNamara AL, Warmenhoven JW, Henthorn NT, Kirkby KJ, Merchant MJ, et al. A new standard DNA damage (SDD) data format. Radiat Res. 2019;191(1):76–92.
Article
CAS
Google Scholar
Sicard-Roselli C, Brun E, Gilles M, Baldacchino G, Kelsey C, McQuaid H, et al. A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions. Small. 2014;10(16):3338–46.
Article
CAS
Google Scholar
Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 2018;13(1):44.
Article
CAS
Google Scholar
Taggart LE, McMahon SJ, Butterworth KT, Currell FJ, Schettino G, Prise KM. Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology. 2016;27(21):215101.
Article
CAS
Google Scholar
Tan T, Beydoun D, Amal R. Effects of organic hole scavengers on the photocatalytic reduction of selenium anions. J Photochem Photobiol A Chem. 2003;159(3):273–80.
Article
CAS
Google Scholar
Townley HE, Rapa E, Wakefield G, Dobson PJ, Xu M, Huang N, et al. Nanoparticle augmented radiation treatment decreases cancer cell proliferation. Nanomedicine. 2012;8(4):526–36.
Article
CAS
Google Scholar
Tzelepi K, Espinosa Garcia C, Williams P, Golding J. Galactose: PEGamine coated gold nanoparticles adhere to filopodia and cause extrinsic apoptosis. Nanoscale Adv. 2019;1(2):807–16.
Article
CAS
Google Scholar
Wang X, Zhang C, Du J, Dong X, Jian S, Yan L, et al. Enhanced generation of non-oxygen dependent free radicals by schottky-type heterostructures of Au–Bi2S3 nanoparticles via X-ray-induced catalytic reaction for radiosensitization. ACS Nano. 2019;13:5947–58.
Article
CAS
Google Scholar
Zhang D, Zhou T, He F, Rong Y, Lee SH, Wu S, et al. Reactive oxygen species formation and bystander effects in gradient irradiation on human breast cancer cells. Oncotarget. 2016;7(27):41622–36.
Google Scholar
Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vásquez-Vivar J, et al. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med. 2003;34(11):1359–68.
Article
CAS
Google Scholar
Zhao N, Yang Z, Li B, Meng J, Shi Z, Li P, et al. RGD-conjugated mesoporous silica-encapsulated gold nanorods enhance the sensitization of triple-negative breast cancer to megavoltage radiation therapy. Int J Nanomed. 2016;11:5595–610.
Article
CAS
Google Scholar
Zobel M. Observing structural reorientations at solvent-nanoparticle interfaces by X-ray diffraction—putting water in the spotlight. Acta Crystallogr Sect A Found Adv. 2016;72(6):621–31. https://doi.org/10.1107/S2053273316013516.
Article
CAS
Google Scholar
Zobel M, Neder RB, Kimber SAJ. Universal solvent restructuring induced by colloidal nanoparticles. Science. 2015;347(6219):292–4.
Article
CAS
Google Scholar