Abril I, de Vera P, Garcia-Molina R, Kyriakou I, Emfietzoglou D. Lateral spread of dose distribution by therapeutic proton beams in liquid water. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2015;352:176–80. https://doi.org/10.1016/j.nimb.2014.11.100.
Article
CAS
Google Scholar
Allen AO. The radiation chemistry of water and aqueous solutions. Princeton: D. Van Nostrand; 1961.
Google Scholar
Appleby A, Schwarz HA. Radical and molecular yields in water irradiated by.gamma.-rays and heavy ions. J Phys Chem. 1969;73(6):1937–41. https://doi.org/10.1021/j100726a048.
Article
CAS
Google Scholar
Balcerzyk A, Baldacchino G. Implementation of laser induced fluorescence in a pulse radiolysis experiment—a new way to analyze resazurin-like reduction mechanisms. Analyst. 2014;139:1707–12. https://doi.org/10.1039/c3an02000b.
Article
CAS
Google Scholar
Baldacchino G. Pulse radiolysis in water with heavy-ion beams. A short review. Radiat Phys Chem. 2008;77(10–12):1218–23. https://doi.org/10.1016/j.radphyschem.2008.05.033.
Article
CAS
Google Scholar
Baldacchino G. L’apport des ions accélérés dans l’épopée de la chimie sous rayonnement. In: CNRS, editor. Histoire de la Recherche Contemporaine, vol VI. vol 1. 2017. p. 47–55.
Baldacchino G, Katsumura Y. Chemical processes in heavy ions track. In: Rao BSM, Wishart JF, editors. Recent trends in radiation chemistry. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2010. p. 231–54.
Chapter
Google Scholar
Baldacchino G, Le Parc D, Hickel B, Gardes-Albert M, Abedinzadeh Z, Jore D, Deycard S, Bouffard S, Mouton V, Balanzat E. Direct observation of HO2/O2
− free radicals generated in water by a high-linear energy transfer pulsed heavy-ion beam. Radiat Res. 1998a;149(2):128–33.
Article
CAS
Google Scholar
Baldacchino G, Bouffard S, Balanzat E, Gardes-Albert M, Abedinzadeh Z, Jore D, Deycard S, Hickel B. Direct time-resolved measurement of radical species formed in water by heavy ions irradiation. Nucl Instrum Methods Physics Res Sect B Beam Interact Mater Atoms. 1998b;146(1–4):528–32.
Article
CAS
Google Scholar
Baldacchino G, Maeyama T, Yamashita S, Taguchi M, Kimura A, Katsumura Y, Murakami T. Determination of the time-dependent OH-yield by using fluorescent probe. Application to heavy ion irradiation. Chem Phys Lett. 2009;468(4–6):275–9. https://doi.org/10.1016/j.cplett.2008.12.006.
Article
CAS
Google Scholar
Belloni J, Mostafavi M, Douki T, Spotheim-Maurizot M. Radiation chemistry—from basics to applications in material and life sciences. Actual Chim. 2008;316:I–XX.
Google Scholar
Blakely EA, Ngo FQH, Curtis SB, Tobias CA. Heavy-ion radiobiology: cellular studies. In: Lett JT, editor. Advances in radiation biology, vol. 11. Amsterdam: Elsevier; 1984. p. 295–389. https://doi.org/10.1016/b978-0-12-035411-5.50013-7.
Chapter
Google Scholar
Brun E, Sicard-Roselli C. Actual questions raised by nanoparticle radiosensitization. Radiat Phys Chem. 2016;128:134–42. https://doi.org/10.1016/j.radphyschem.2016.05.024.
Article
CAS
Google Scholar
Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (·OH/·O−) in aqueous-solution. J Phys Chem Ref Data. 1988;17(2):513–886.
Article
CAS
Google Scholar
Castaño JD, Zhang J, Schilling JS. Evaluation of colorimetric assays for determination of H2O2 in planta during fungal wood decomposition. J Microbiol Methods. 2018;145:10–3. https://doi.org/10.1016/j.mimet.2017.12.004.
Article
CAS
Google Scholar
Crabtree HG, Cramer W, Murray James A. The action of radium on cancer cells. II.—some factors determining the susceptibility of cancer cells to radium. Proc R Soc Lond Ser B Contain Pap Biol Character. 1933;113(782):238–50. https://doi.org/10.1098/rspb.1933.0044.
Article
CAS
Google Scholar
Debierne A. Recherches sur les gaz produits par les substances radioactives. Décomposition de l’eau. Annales de Physique. 1914;2:97–127.
Article
Google Scholar
Debski D, Smulik R, Zielonka J, Michalowski B, Jakubowska M, Debowska K, Adamus J, Marcinek A, Kalyanaraman B, Sikora A. Mechanism of oxidative conversion of Amplex (R) Red to resorufin: pulse radiolysis and enzymatic studies. Free Radic Biol Med. 2016;95:323–32. https://doi.org/10.1016/j.freeradbiomed.2016.03.027.
Article
CAS
Google Scholar
El Omar AK, Schmidhammer U, Rousseau B, LaVerne J, Mostafavi M. Competition reactions of H2O·+ radical in concentrated Cl− aqueous solutions: picosecond pulse radiolysis study. J Phys Chem A. 2012;116(47):11509–18. https://doi.org/10.1021/jp309381z.
Article
CAS
Google Scholar
Emfietzoglou D, Karava K, Papamichael G, Moscovitch M. Monte-Carlo calculations of radial dose and restricted-let for protons in water. Radiat Prot Dosimetry. 2004;110(1–4):871–9. https://doi.org/10.1093/rpd/nch163.
Article
CAS
Google Scholar
Farhataziz RMAJ, Rodgers MAJ. Radiation chemistry—principles and applications. New York: VCH Publishers; 1987.
Google Scholar
Favaudon V, Fouillade C, Vozenin MC. Ultrahigh dose-rate, “flash” irradiation minimizes the side-effects of radiotherapy. Cancer Radiother. 2015;19(6–7):526–31. https://doi.org/10.1016/j.canrad.2015.04.006.
Article
CAS
Google Scholar
Ferradini C, Jay-Gerin JP. Radiolysis of water and aqueous solutions—history and present state of the science. Can J Chem Revue Canadienne De Chimie. 1999;77(9):1542–75.
Article
CAS
Google Scholar
Foley S, Rotureau P, Pin S, Baldacchino G, Renault JP, Mialocq JC. Radiolysis of confined water: production and reactivity of hydroxyl radicals. Angew Chem Int Ed Engl. 2005;44(1):110–2. https://doi.org/10.1002/anie.200460284.
Article
CAS
Google Scholar
Fouillade C, Favaudon V, Vozenin MC, Romeo PH, Bourhis J, Verrelle P, Devauchelle P, Patriarca A, Heinrich S, Mazal A, Dutreix M. Hopes of high dose-rate radiotherapy. Bull Cancer. 2017;104(4):380–4. https://doi.org/10.1016/j.bulcan.2017.01.012.
Article
Google Scholar
Friedland W, Dingfelder M, Kundrát P, Jacob P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res Fundam Mol Mech Mutagen. 2011;711(1–2):28–40. https://doi.org/10.1016/j.mrfmmm.2011.01.003.
Article
CAS
Google Scholar
Friedland W, Schmitt E, Kundrat P, Dingfelder M, Baiocco G, Barbieri S, Ottolenghi A. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping. Sci Rep. 2017;7:15. https://doi.org/10.1038/srep45161.
Article
CAS
Google Scholar
Gaigeot MP, Vuilleumier R, Stia C, Galassi ME, Rivarola R, Gervais B, Politis MF. A multi-scale ab initio theoretical study of the production of free radicals in swift ion tracks in liquid water. J Phys B Atom Mol Opt Phys. 2007;40(1):1–12. https://doi.org/10.1088/0953-4075/40/1/001.
Article
CAS
Google Scholar
Garcia-Molina R, Abril I, Denton CD, Heredia-Avalos S, Kyriakou I, Emfietzoglou D. Calculated depth-dose distributions for H+ and He+ beams in liquid water. Nucl Instrum Methods Phys Res Sect B. 2009;267(16):2647–52. https://doi.org/10.1016/j.nimb.2009.05.038.
Article
CAS
Google Scholar
Gervais B, Beuve M, Olivera GH, Galassi ME, Rivarola RD. Production of HO2 and O2 by multiple ionization in water radiolysis by swift carbon ions. Chem Phys Lett. 2005;410(4–6):330–4. https://doi.org/10.1016/j.cplett.2005.05.057.
Article
CAS
Google Scholar
Gervais B, Beuve M, Olivera GH, Galassi ME. Numerical simulation of multiple ionization and high LET effects in liquid water radiolysis. Radiat Phys Chem. 2006;75(4):493–513. https://doi.org/10.1016/j.radphyschem.2005.09.015.
Article
CAS
Google Scholar
Giesel FO. Ueber radium und radioactive Stoffe. Ber Dtsch Chem Ges. 1902;35(3):3608–11.
Article
CAS
Google Scholar
Gilles M, Brun E, Sicard-Roselli C. Quantification of hydroxyl radicals and solvated electrons produced by irradiated gold nanoparticles suggests a crucial role of interfacial water. J Colloid Interface Sci. 2018;525:31–8. https://doi.org/10.1016/j.jcis.2018.04.017.
Article
CAS
Google Scholar
Grall R, Girard H, Saad L, Petit T, Gesset C, Combis-Schlumberger M, Paget V, Delic J, Arnault J-C, Chevillard S. Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials. 2015;61:290–8. https://doi.org/10.1016/j.biomaterials.2015.05.034.
Article
CAS
Google Scholar
Gu J, Leszczynski J, Schaefer HF. Interactions of electrons with bare and hydrated biomolecules: from nucleic acid bases to DNA segments. Chem Rev. 2012;112(11):5603–40. https://doi.org/10.1021/cr3000219.
Article
CAS
Google Scholar
Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49(18):N309–15. https://doi.org/10.1088/0031-9155/49/18/n03.
Article
CAS
Google Scholar
Hart EJ, Boag JW. Absorption spectrum of the hydrated electron in water and in aqueous solutions. J Am Chem Soc. 1962;84(21):4090–5. https://doi.org/10.1021/ja00880a025.
Article
CAS
Google Scholar
Hatano Y, Katsumura Y, Mozumder A, editors. Charged particle and photon interactions with matter. Recent advances, applications, and interfaces. Boca Raton: CRC Press, Taylor and Francis Group; 2011.
Google Scholar
Haume K, de Vera P, Verkhovtsev A, Surdutovich E, Mason NJ, Solov’yov AV. Transport of secondary electrons through coatings of ion-irradiated metallic nanoparticles. Eur Phys J D. 2018;72(6):22. https://doi.org/10.1140/epjd/e2018-90050-x.
Article
CAS
Google Scholar
Heredia-Avalos S, Abril I, Denton CD, Moreno-Marin JC, Garcia-Molina R. Target inner-shells contributions to the stopping power and straggling for H and He ions in gold. J Phys Condens Matter. 2007;19(46):8. https://doi.org/10.1088/0953-8984/19/46/466205.
Article
CAS
Google Scholar
Incerti S, Douglass M, Penfold S, Guatelli S, Bezak E. Review of Geant4-DNA applications for micro and nanoscale simulations. Phys Med. 2016;32(10):1187–200. https://doi.org/10.1016/j.ejmp.2016.09.007.
Article
CAS
Google Scholar
Jonah CD. A short history of the radiation chemistry of water. Radiat Res. 1995;144(2):141–7. https://doi.org/10.2307/3579253.
Article
CAS
Google Scholar
Kanike V, Meesungnoen J, Jay-Gerin JP. Acid spike effect in spurs/tracks of the low/high linear energy transfer radiolysis of water: potential implications for radiobiology. RSC Adv. 2015;5(54):43361–70. https://doi.org/10.1039/c5ra07173a.
Article
CAS
Google Scholar
Kernbaum M. Sur la d’ecomposition de l’eau par les rayons β du radium et par les rayons ultra-violets. Le Radium. 1909;6(8):225–8.
Article
Google Scholar
Khodja H. Ion microbeam irradiation for radiobiology and radical chemistry: status and prospect. In: J Phys Conf Series, vol. 261, no. 1. 2011. p. 012012.
Google Scholar
Khodja H, Hanot M, Carriere M, Hoarau J, Angulo JF. The single-particle microbeam facility at CEA-Saclay. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2009;267(12–13):1999–2002. https://doi.org/10.1016/j.nimb.2009.03.040.
Article
CAS
Google Scholar
Kim MJ, Pal S, Tak YK, Lee K-H, Yang TK, Lee S-J, Song JM. Determination of the dose-depth distribution of proton beam using resazurin assay in vitro and diode laser-induced fluorescence detection. Anal Chim Acta. 2007;593(2):214–23. https://doi.org/10.1016/j.aca.2007.05.009.
Article
CAS
Google Scholar
Klein S, Sommer A, Distel LVR, Neuhuber W, Kryschi C. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun. 2012;425(2):393–7. https://doi.org/10.1016/j.bbrc.2012.07.108.
Article
CAS
Google Scholar
Kobayashi K, Usami N, Porcel E, Lacombe S, Le Sech C. Enhancement of radiation effect by heavy elements. Mutat Res. 2010;704(1):123–31. https://doi.org/10.1016/j.mrrev.2010.01.002.
Article
CAS
Google Scholar
Kovacik J, Babula P. Fluorescence microscopy as a tool for visualization of metal-induced oxidative stress in plants. Acta Physiol Plant. 2017;39(8):7. https://doi.org/10.1007/s11738-017-2455-0.
Article
CAS
Google Scholar
Kroh J, editor. Early developments in radiation chemistry. Cambridge: The Royal Society of Chemistry; 1989.
Google Scholar
Kumar A, Adhikary A, Shamoun L, Sevilla MD. Do solvated electrons (e−
aq) reduce DNA bases? A Gaussian 4 and density functional theory-molecular dynamics study. J Phys Chem B. 2016;120(9):2115–23. https://doi.org/10.1021/acs.jpcb.5b11269.
Article
CAS
Google Scholar
Lacombe S, Porcel E, Scifoni E. Particle therapy and nanomedicine: state of art and research perspectives. Cancer Nanotechnol. 2017;8(1):9. https://doi.org/10.1186/s12645-017-0029-x.
Article
CAS
Google Scholar
Lamart S, Miller BW, Van der Meeren A, Tazrart A, Angulo JF, Griffiths NM. Actinide bioimaging in tissues: comparison of emulsion and solid track autoradiography techniques with the iQID camera. PLoS ONE. 2017;12(10):18. https://doi.org/10.1371/journal.pone.0186370.
Article
CAS
Google Scholar
Landberg T, Nilsson P. Prescribing, recording, and reporting external beam therapy a summary of ICRU Reports nos 29, 50, 62 and 71. In: Adliene D, editor. Medical physics in the Baltic States: proceedings of the 7th international conference on medical physics. Kaunas: Kaunas Univ Technology Press; 2009. p. 43.
LaVerne JA, Schuler RH. Track effects in radiation chemistry: production of hydroperoxy radical in the radiolysis of water by high-LET nickel-58 ions. J Phys Chem. 1987;91(26):6560–3. https://doi.org/10.1021/j100310a028.
Article
CAS
Google Scholar
LaVerne JA, Schuler RH. Track effects in the radiolysis of water—HO2· production by 200–800-MeV carbon-ions. J Phys Chem. 1992;96(18):7376–8. https://doi.org/10.1021/j100197a044.
Article
CAS
Google Scholar
Le Caer S. Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water. 2011;3(1):235–53. https://doi.org/10.3390/w3010235.
Article
CAS
Google Scholar
Lefrancois P, Vajrala VSR, Arredondo IB, Goudeau B, Doneux T, Bouffier L, Arbault S. Direct oxidative pathway from amplex red to resorufin revealed by in situ confocal imaging. Phys Chem Chem Phys. 2016;18(37):25817–22. https://doi.org/10.1039/c6cp04438g.
Article
CAS
Google Scholar
Lertnaisat P, Katsumura Y, Mukai S, Umehara R, Shimizu Y, Suzuki M. Simulation of the inhibition of water alpha-radiolysis via H2 addition. J Nucl Sci Technol. 2014;51(9):1087–95. https://doi.org/10.1080/00223131.2014.907548.
Article
CAS
Google Scholar
LeTilly V, Pin S, Hickel B, Alpert B. Pulse radiolysis reduction of myoglobin. Hydrated electrons diffusion inside the protein matrix. J Am Chem Soc. 1997;119(44):10810–4. https://doi.org/10.1021/ja9635591.
Article
CAS
Google Scholar
Lin YT, McMahon SJ, Scarpelli M, Paganetti H, Schuemann J. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Phys Med Biol. 2014;59(24):7675–89. https://doi.org/10.1088/0031-9155/59/24/7675.
Article
CAS
Google Scholar
Lorat Y, Brunner CU, Schanz S, Jakob B, Taucher-Scholz G, Rübe CE. Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy—the heavy burden to repair. DNA Repair. 2015;28:93–106. https://doi.org/10.1016/j.dnarep.2015.01.007.
Article
CAS
Google Scholar
Ma J, Wang FR, Mostafavi M. Ultrafast chemistry of water radical cation, H2O·+, in aqueous solutions. Molecules. 2018;23(2):15. https://doi.org/10.3390/molecules23020244.
Article
CAS
Google Scholar
Maeyama T, Yamashita S, Taguchi M, Baldacchino G, Sihver L, Murakami T, Katsumura Y. Production of a fluorescence probe in ion-beam radiolysis of aqueous coumarin-3-carboxylic acid solution-2: effects of nuclear fragmentation and its simulation with PHITS. Radiat Phys Chem. 2011a;80(12):1352–7. https://doi.org/10.1016/j.radphyschem.2011.07.004.
Article
CAS
Google Scholar
Maeyama T, Yamashita S, Baldacchino G, Taguchi M, Kimura A, Murakami T, Katsumura Y. Production of a fluorescence probe in ion-beam radiolysis of aqueous coumarin-3-carboxylic acid solution-1: beam quality and concentration dependences. Radiat Phys Chem. 2011b;80(4):535–9. https://doi.org/10.1016/j.radphyschem.2010.11.013.
Article
CAS
Google Scholar
Magee JL. Introduction: Milton Burton, Godfather of radiation chemistry 4 March 1902–10 November 1985. Int J Radiat Appl Instrum Part C Radiat Phys Chem. 1988;32(1):1–2. https://doi.org/10.1016/1359-0197(88)90004-5.
Article
Google Scholar
Magee JL, Chatterjee A. Track reactions of radiation chemistrty. In: Freeman GR, editor. Kinetics of nonhomogenoeous processes. a practical introduction for chemists, biologists, physicists, and materials scientists. New york: Wiley; 1987. p. 171–214.
Google Scholar
McKinnon S, Guatelli S, Incerti S, Ivanchenko V, Konstantinov K, Corde S, Lerch M, Tehei M, Rosenfeld A. Local dose enhancement of proton therapy by ceramic oxide nanoparticles investigated with Geant4 simulations. Phys Med. 2016;32(12):1584–93. https://doi.org/10.1016/j.ejmp.2016.11.112.
Article
Google Scholar
Meesungnoen J, Jay-Gerin JP. Effect of multiple ionization on the yield of H2O2 produced in the radiolysis of aqueous 0.4 M H2SO4 solutions by high-LET 12C6+ and 20Ne9+ ions. Radiat Res. 2005;164(5):688–94.
Article
CAS
Google Scholar
Meesungnoen J, Jay-Gerin JP. High-LET ion radiolysis of water: oxygen production in tracks. Radiat Res. 2009;171(3):379–86.
Article
CAS
Google Scholar
Misawa M, Takahashi J. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomed Nanotechnol Biol Med. 2011;7(5):604–14. https://doi.org/10.1016/j.nano.2011.01.014.
Article
CAS
Google Scholar
News of Science (1957). Science 125(3236):18–22. https://doi.org/10.1126/science.125.3236.18.
Nikjoo H, O’Neill P, Wilson WE, Goodhead DT. Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat Res. 2001;156(5):577–83. https://doi.org/10.1667/0033-7587(2001)156%5b0577:CAFDTS%5d2.0.CO;2.
Article
CAS
Google Scholar
Nikjoo H, Uehara S, Emfietzoglou D, Cucinotta FA. Track-structure codes in radiation research. Radiat Meas. 2006;41(9–10):1052–74. https://doi.org/10.1016/j.radmeas.2006.02.001.
Article
CAS
Google Scholar
Quintiliani M. The oxygen effect in radiation inactivation of DNA and enzymes. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;50(4):573–94. https://doi.org/10.1080/09553008614550981.
Article
CAS
Google Scholar
Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med. 2009;9(4):442–58.
Article
CAS
Google Scholar
Rosa S, Connolly C, Schettino G, Butterworth KT, Prise KM. Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnol. 2017;8(1):2. https://doi.org/10.1186/s12645-017-0026-0.
Article
CAS
Google Scholar
Roth O, Dahlgren B, LaVerne JA. Radiolysis of water on ZrO2 nanoparticles. J Phys Chem C. 2012;116(33):17619–24. https://doi.org/10.1021/jp304237c.
Article
CAS
Google Scholar
Sage E, Shikazono N. Radiation-induced clustered DNA lesions: repair and mutagenesis. Free Radic Biol Med. 2017;107:125–35. https://doi.org/10.1016/j.freeradbiomed.2016.12.008.
Article
CAS
Google Scholar
Schuler RH, Patterson LK, Janata E. Yield for the scavenging of OH radicals in the radiolysis of N2O-saturated aqueous-solutions. J Phys Chem. 1980;84(16):2088–9. https://doi.org/10.1021/j100453a020.
Article
CAS
Google Scholar
Slot JW, Geuze HJ. Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol. 1981;90:533–6.
Article
CAS
Google Scholar
Solov’yov AV. Nanoscale insights into ion-beam cancer therapy. Switzerland: Springer International Publishing; 2017. https://doi.org/10.1007/978-3-319-43030-0.
Book
Google Scholar
Spinks JWT, Woods RJ. An introduction to radiation chemitry. 3rd ed. New York: Wiley; 1990.
Google Scholar
Stopping powers for electrons and positrons. ICRU Report, vol 37. Bethesda: International Commission on radiation Units and Measurements; 1984.
Surdutovich E, Solov’yov AV. Shock wave initiated by an ion passing through liquid water. Phys Rev E. 2010;82(5):5. https://doi.org/10.1103/PhysRevE.82.051915.
Article
CAS
Google Scholar
Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9(4):539–49.
Article
CAS
Google Scholar
Tran HN, Karamitros M, Ivanchenko VN, Guatelli S, McKinnon S, Murakami K, Sasaki T, Okada S, Bordage MC, Francis Z, El Bitar Z, Bernal MA, Shin JI, Lee SB, Barberet P, Tran TT, Brown JMC, Hao TVN, Incerti S. Geant4 Monte Carlo simulation of absorbed dose and radiolysis yields enhancement from a gold nanoparticle under MeV proton irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2016;373:126–39. https://doi.org/10.1016/j.nimb.2016.01.017.
Article
CAS
Google Scholar
Von Sonntag C. The chemical basis of radiation biology. New York: Taylor and Francis; 1987.
Google Scholar
Von Sonntag C. Free-radical-induced DNA damage and its repair. A chemical perspective. Berlin: Springer; 2006. https://doi.org/10.1007/3-540-30592-0.
Book
Google Scholar
Wasselin-Trupin V, Baldacchino G, Bouffard S, Hickel B. Hydrogen peroxide yields in water radiolysis by high-energy ion beams at constant LET. Radiat Phys Chem. 2002;65(1):53–61.
Article
CAS
Google Scholar
Weyrather WK, Kraft G. RBE of carbon ions: experimental data and the strategy of RBE calculation for treatment planning. Radiother Oncol. 2004;73:S161–9. https://doi.org/10.1016/S0167-8140(04)80041-0.
Article
CAS
Google Scholar
Wishart JF, Rao BSM. Recent trends in radiation chemistry. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2010.
Book
Google Scholar
Ziegler JF, Ziegler MD, Biersack JP. SRIM—The stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2010;268(11–12):1818–23. https://doi.org/10.1016/j.nimb.2010.02.091.
Article
CAS
Google Scholar
Zimbrick JD. Radiation chemistry and the radiation research society: a history from the beginning. Radiat Res. 2002;158(2):127–40. https://doi.org/10.1667/0033-7587(2002)158%5b0127:RRSRCA%5d2.0.CO;2.
Article
CAS
Google Scholar