Abadjian M-C, Latoche J, Thomas E, Foley L, Day K, Lux F et al (2016) PET and MR imaging with 64Cu/68Ga-labeled AGuIX ultra-small nanoparticles in tumor-bearing mice. J Nucl Med 57(supplement 2):1181–1181
Google Scholar
Abbasi AZ, Gordijo CR, Amini MA, Maeda A, Rauth AM, DaCosta RS et al (2016) Hybrid manganese dioxide nanoparticles potentiate radiation therapy by modulating tumor hypoxia. Cancer Res 76(22):6643–6656
Article
CAS
Google Scholar
AGuIX (2021) Clinical trial cancer drugs, AGuIX® evaluation. NH TherAguix. https://nhtheraguix.com/pipeline/. Accessed 26 Sept 2021
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF (2019) An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol 71(8):1185–1198
Article
CAS
Google Scholar
Bagley AF, Ludmir EB, Maitra A, Minsky BD, Li Smith G, Das P et al (2022) NBTXR3, a first-in-class radioenhancer for pancreatic ductal adenocarcinoma: report of first patient experience. Clin Transl Radiat Oncol 33:66–69
Article
Google Scholar
Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M (2016) Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges. Nanomed Nanotechnol Biol Med 12(2):287–307
Article
CAS
Google Scholar
Bashir MR, Bhatti L, Marin D, Nelson RC (2015) Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 41(4):884–898
Article
Google Scholar
Bazak R, Houri M, Achy SE, Kamel S, Refaat T (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141(5):769–784
Article
CAS
Google Scholar
Bi Y, Hao F, Yan G, Teng L, Lee RJ, Xie J (2016) Actively targeted nanoparticles for drug delivery to tumor. Curr Drug Metab 17(8):763–782
Article
CAS
Google Scholar
Borisova T, Pozdnyakova N, Krisanova N, Pastukhov A, Dudarenko M, Paliienko K et al (2021) Unique features of brain metastases-targeted AGuIX nanoparticles vs their constituents: a focus on glutamate-/GABA-ergic neurotransmission in cortex nerve terminals. Food Chem Toxicol 149:112004
Article
CAS
Google Scholar
Bort G, Lux F, Dufort S, Crémillieux Y, Verry C, Tillement O (2020) EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: from animal to human with theranostic AGuIX nanoparticles. Theranostics 10(3):1319–1331
Article
CAS
Google Scholar
Bouziotis P, Stellas D, Thomas E, Truillet C, Tsoukalas C, Lux F et al (2017) 68Ga-radiolabeled AGuIX nanoparticles as dual-modality imaging agents for PET/MRI-guided radiation therapy. Nanomed 12(13):1561–1574
Article
CAS
Google Scholar
Brighi C, Verburg N, Koh E-S, Walker A, Chen C, Pillay S et al (2022) Repeatability of radiotherapy dose-painting prescriptions derived from a multiparametric magnetic resonance imaging model of glioblastoma infiltration. Phys Imaging Radiat Oncol 23:8–15
Article
Google Scholar
Butterworth KT, McMahon SJ, Currell FJ, Prise KM (2012) Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 4(16):4830–4838
Article
CAS
Google Scholar
Byrne HL, Le Duc G, Lux F, Tillement O, Holmes NM, James A et al (2020) Enhanced MRI-guided radiotherapy with gadolinium-based nanoparticles: preclinical evaluation with an MRI-linac. Cancer Nanotechnol 11(1):9
Article
CAS
Google Scholar
Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y (2019) Manganese oxide nanoparticles as MRI contrast agents in tumor multimodal imaging and therapy. Int J Nanomed 14:8321–8344
Article
CAS
Google Scholar
Castaneda RT, Khurana A, Khan R, Daldrup-Link HE (2011) Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle. J vis Exp 57:e3482
Google Scholar
Chapman S, Dobrovolskaia M, Farahani K, Goodwin A, Joshi A, Lee H et al (2013) Nanoparticles for cancer imaging: the good, the bad, and the promise. Nano Today 8(5):454–460
Article
CAS
Google Scholar
Chen WC, Zhang AX, Li S-D (2012) Limitations and niches of the active targeting approach for nanoparticle drug delivery. Eur J Nanomed 4(2–4):89–93
Google Scholar
Chen F, Ehlerding EB, Cai W (2014) Theranostic nanoparticles. J Nucl Med 55(12):1919–1922
Article
CAS
Google Scholar
Chin S, Eccles CL, McWilliam A, Chuter R, Walker E, Whitehurst P et al (2020) Magnetic resonance-guided radiation therapy: a review. J Med Imaging Radiat Oncol 64(1):163–177
Article
Google Scholar
Choi J, Kim G, Cho SB, Im H-J (2020) Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnol 18(1):122
Article
Google Scholar
Clemons TD, Singh R, Sorolla A, Chaudhari N, Hubbard A, Iyer KS (2018) Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy. Langmuir 34(50):15343–15349
Article
CAS
Google Scholar
Corradini S, Alongi F, Andratschke N, Belka C, Boldrini L, Cellini F et al (2019) MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol 14(1):92
Article
CAS
Google Scholar
Costa AF, van der Pol CB, Maralani PJ, McInnes MDF, Shewchuk JR, Verma R et al (2018) Gadolinium deposition in the brain: a systematic review of existing guidelines and policy statement issued by the Canadian association of radiologists. Can Assoc Radiol J 69(4):373–382
Article
Google Scholar
Damasco JA, Ohulchanskyy TY, Mahajan S, Chen G, Singh A, Kutscher HL et al (2021) Excretable, ultrasmall hexagonal NaGdF4:Yb50% nanoparticles for bimodal imaging and radiosensitization. Cancer Nanotechnol 12(1):4
Article
CAS
Google Scholar
de Mol van Otterloo SR, Christodouleas JP, Blezer ELA, Akhiat H, Brown K, Choudhury A et al (2020) The MOMENTUM study: an international registry for the evidence-based introduction of MR-guided adaptive therapy. Front Oncol 10:1328. https://doi.org/10.3389/fonc.2020.01328
Article
Google Scholar
Dentamaro M, Lux F, Vander Elst L, Dauguet N, Montante S, Moussaron A et al (2016) Chemical and in vitro characterizations of a promising bimodal AGuIX probe able to target apoptotic cells for applications in MRI and optical imaging. Contrast Media Mol Imaging 11(5):381–395
Article
CAS
Google Scholar
Detappe A, Kunjachan S, Rottmann J, Robar J, Tsiamas P, Korideck H et al (2015) AGuIX nanoparticles as a promising platform for image-guided radiation therapy. Cancer Nanotechnol 6(1):4
Article
Google Scholar
Detappe A, Thomas E, Tibbitt MW, Kunjachan S, Zavidij O, Parnandi N et al (2017) Ultrasmall silica-based bismuth gadolinium nanoparticles for dual magnetic resonance-computed tomography image guided radiation therapy. Nano Lett 17(3):1733–1740
Article
CAS
Google Scholar
Detappe A, Mathieu C, Jin C, Agius MP, Diringer M-C, Tran V-L et al (2020) Anti-MUC1-c antibody-conjugated nanoparticles potentiate the efficacy of fractionated radiation therapy. Int J Radiat Oncol 108(5):1380–1389
Article
Google Scholar
Du F, Zhang L, Zhang L, Zhang M, Gong A, Tan Y et al (2017) Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors. Biomaterials 121:109–120
Article
CAS
Google Scholar
Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. Materials 12(4):617
Article
Google Scholar
Fang J, Islam W, Maeda H (2020) Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv Drug Deliv Rev 157:142–160
Article
CAS
Google Scholar
Fernandes C, Suares D, Yergeri MC (2018) Tumor microenvironment targeted nanotherapy. Front Pharmacol 9:1230
Article
CAS
Google Scholar
Fries P, Morr D, Müller A, Lux F, Tillement O, Massmann A et al (2015) Evaluation of a gadolinium-based nanoparticle (AGuIX) for contrast-enhanced MRI of the liver in a rat model of hepatic colorectal cancer metastases at 9.4 Tesla. ROFO Fortschr Geb Rontgenstr Nuklearmed 187(12):1108–1115
Article
CAS
Google Scholar
Gawel AM, Singh R, Debinski W (2022) Metal-based nanostructured therapeutic strategies for glioblastoma treatment—an update. Biomedicines 10(7):1598
Article
CAS
Google Scholar
Gholami YH, Maschmeyer R, Kuncic Z (2019) Radio-enhancement effects by radiolabeled nanoparticles. Sci Rep 9(1):14346
Article
Google Scholar
Gholami YH, Yuan H, Wilks MQ, Maschmeyer R, Normandin MD, Josephson L et al (2020) A radio-nano-platform for T1/T2 dual-mode PET-MR imaging. Int J Nanomed 15:1253–1266
Article
CAS
Google Scholar
Grégoire V, Guckenberger M, Haustermans K, Lagendijk JJW, Ménard C, Pötter R et al (2020) Image guidance in radiation therapy for better cure of cancer. Mol Oncol 14(7):1470–1491
Article
Google Scholar
Gries M, Thomas N, Daouk J, Rocchi P, Choulier L, Jubréaux J et al (2020) Multiscale selectivity and in vivo biodistribution of NRP-1-targeted theranostic AGuIX nanoparticles for PDT of glioblastoma. Int J Nanomed 15:8739–8758
Article
CAS
Google Scholar
Hoffmann C, Calugaru V, Borcoman E, Moreno V, Calvo E, Liem X et al (2021) Phase I dose-escalation study of NBTXR3 activated by intensity-modulated radiation therapy in elderly patients with locally advanced squamous cell carcinoma of the oral cavity or oropharynx. Eur J Cancer 146:135–144
Article
CAS
Google Scholar
Hofmann-Amtenbrink M, Grainger DW, Hofmann H (2015) Nanoparticles in medicine: current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomed Nanotechnol Biol Med 11(7):1689–1694
Article
CAS
Google Scholar
Houston ZH, Bunt J, Chen K-S, Puttick S, Howard CB, Fletcher NL et al (2020) Understanding the uptake of nanomedicines at different stages of brain cancer using a modular nanocarrier platform and precision bispecific antibodies. ACS Cent Sci 6(5):727–738
Article
CAS
Google Scholar
Hu P, Cheng D, Huang T, Banizs AB, Xiao J, Liu G et al (2017) Evaluation of novel 64Cu-labeled theranostic gadolinium-based nanoprobes in HepG2 tumor-bearing nude mice. Nanoscale Res Lett 12(1):523
Article
Google Scholar
Hu P, Fu Z, Liu G, Tan H, Xiao J, Shi H et al (2019) Gadolinium-based nanoparticles for theranostic MRI-guided radiosensitization in hepatocellular carcinoma. Front Bioeng Biotechnol 7:368
Article
Google Scholar
Hua S, de Matos MBC, Metselaar JM, Storm G (2018) Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 9:790
Article
Google Scholar
Huclier S, Ntsiba E, Thomas E, Alliot C, Cutler S, Lux F et al (2019) Multimodal AGuIX® nanoparticles: size characterization by HF5 and optimization of the radiolabeling with various SPECT/PET/theranostic tracers. Int J Med Nano Res. https://doi.org/10.23937/2378-3664.1410027
Article
Google Scholar
Jaffray D, Kupelian P, Djemil T, Macklis RM (2007) Review of image-guided radiation therapy. Expert Rev Anticancer Ther 7(1):89–103
Article
Google Scholar
Jain S, Coulter JA, Hounsell AR, Butterworth KT, McMahon SJ, Hyland WB et al (2011) Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys 79(2):531–539
Article
CAS
Google Scholar
Janko C, Ratschker T, Nguyen K, Zschiesche L, Tietze R, Lyer S et al (2019) Functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as platform for the targeted multimodal tumor therapy. Front Oncol 9:59
Article
Google Scholar
Jin J, Zhao Q (2020) Engineering nanoparticles to reprogram radiotherapy and immunotherapy: recent advances and future challenges. J Nanobiotechnol 18(1):75
Article
CAS
Google Scholar
Keall PJ, Barton M, Crozier S, Australian MRI-Linac Program, including contributors from Ingham Institute, Illawarra Cancer Care Centre, Liverpool Hospital, Stanford University, Universities of Newcastle (2014) The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol 24(3):203–206
Article
Google Scholar
Keall PJ, Brighi C, Glide-Hurst C, Liney G, Liu PZY, Lydiard S et al (2022) Integrated MRI-guided radiotherapy—opportunities and challenges. Nat Rev Clin Oncol 19:1–13
Article
Google Scholar
Kiessling F, Mertens ME, Grimm J, Lammers T (2014) Nanoparticles for imaging: top or flop? Radiology 273(1):10–28
Article
Google Scholar
Kirichenko A (2021) Adaptive stereotactic radiotherapy with superparamagnetic iron oxide nanoparticles (SPION) cellular magnetic resonance imaging on MR-linac (MR-L-SPION) for primary and metastatic hepatic malignancies with assessment of treatment response. clinicaltrials.gov. Report No. NCT04682847. https://clinicaltrials.gov/ct2/show/NCT04682847
Kishan AU, Lamb J, Casado M, Wang X, Ma TM, Low D et al (2022) Magnetic resonance imaging-guided versus computed tomography-guided stereotactic body radiotherapy for prostate cancer (MIRAGE): interim analysis of a phase III randomized trial. J Clin Oncol 40(6_suppl):255
Article
Google Scholar
Kotb S, Piraquive J, Lamberton F, Lux F, Verset M, Di Cataldo V et al (2016) Safety evaluation and imaging properties of gadolinium-based nanoparticles in nonhuman primates. Sci Rep 6(1):35053
Article
CAS
Google Scholar
Kuang Y, Zhang Y, Zhao Y, Cao Y, Zhang Y, Chong Y et al (2020) Dual-stimuli-responsive multifunctional Gd2Hf2O7 nanoparticles for MRI-guided combined chemo-/photothermal-/radiotherapy of resistant tumors. ACS Appl Mater Interfaces 12(32):35928–35939
Article
CAS
Google Scholar
Kuncic Z, Lacombe S (2018) Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Phys Med Biol 63(2):02TR01
Article
Google Scholar
Layne KA, Wood DM, Dargan PI (2020) Gadolinium-based contrast agents—what is the evidence for ‘gadolinium deposition disease’ and the use of chelation therapy? Clin Toxicol 58(3):151–160
Article
CAS
Google Scholar
Le Duc G, Roux S, Paruta-Tuarez A, Dufort S, Brauer E, Marais A et al (2014) Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment. Cancer Nanotechnol 5(1):4
Article
Google Scholar
Lee J-H, Huh Y-M, Jun Y, Seo J, Jang J, Song H-T et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99
Article
CAS
Google Scholar
Lee D, Oh S, Hwang M-S, McCauley M, Pavord D, Kyung Lim Y et al (2022) Application of super-paramagnetic iron oxide nanoparticle to improve tumour visualization for MR-guided SBRT using elekta unity MR-linac, London
Leeman J (2021) Nano-SMART: an adaptive phase I–II trial of AGuIX gadolinium-based nanoparticles with stereotactic magnetic resonance-guided adaptive radiation therapy for centrally located lung tumors and locally advanced unresectable pancreatic ductal adenocarcinoma. clinicaltrials.gov. Report No. NCT04789486. https://clinicaltrials.gov/ct2/show/NCT04789486
Li M, Zhao Q, Yi X, Zhong X, Song G, Chai Z et al (2016) Au@MnS@ZnS core/shell/shell nanoparticles for magnetic resonance imaging and enhanced cancer radiation therapy. ACS Appl Mater Interfaces 8(15):9557–9564
Article
CAS
Google Scholar
Liao Z, Wang H, Lv R, Zhao P, Sun X, Wang S et al (2011) Polymeric liposomes-coated superparamagnetic iron oxide nanoparticles as contrast agent for targeted magnetic resonance imaging of cancer cells. Langmuir 27(6):3100–3105
Article
CAS
Google Scholar
Liney GP, Jelen U, Byrne H, Dong B, Roberts TL, Kuncic Z et al (2019) Technical note: the first live treatment on a 1.0 Tesla inline MRI-linac. Med Phys 46(7):3254–3258
Article
Google Scholar
Liu J, Zhang W, Kumar A, Rong X, Yang W, Chen H et al (2020) Acridine orange encapsulated mesoporous manganese dioxide nanoparticles to enhance radiotherapy. Bioconjug Chem 31(1):82–92
Article
CAS
Google Scholar
Liu Y, Leong ATL, Zhao Y, Xiao L, Mak HKF, Tsang ACO et al (2021) A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat Commun 12(1):7238
Article
CAS
Google Scholar
Luchette M, Korideck H, Makrigiorgos M, Tillement O, Berbeco R (2014) Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells. Nanomed Nanotechnol Biol Med 10(8):1751–1755
Article
CAS
Google Scholar
Lux F, Tran VL, Thomas E, Dufort S, Rossetti F, Martini M et al (2019) AGuIX® from bench to bedside—transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. Br J Radiol 92(1093):20180365
Google Scholar
Ma TM, Lamb JM, Casado M, Wang X, Basehart TV, Yang Y et al (2021) Magnetic resonance imaging-guided stereotactic body radiotherapy for prostate cancer (mirage): a phase iii randomized trial. BMC Cancer 21(1):538
Article
Google Scholar
Maeda H (2015) Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91:3–6
Article
CAS
Google Scholar
Maniglio D, Benetti F, Minati L, Jovicich J, Valentini A, Speranza G et al (2018) Theranostic gold-magnetite hybrid nanoparticles for MRI-guided radiosensitization. Nanotechnology 29(31):315101
Article
CAS
Google Scholar
Maschmeyer RT, Gholami YH, Kuncic Z (2020) Clustering effects in nanoparticle-enhanced β− emitting internal radionuclide therapy: a Monte Carlo study. Phys Med Biol 65(12):125007
Article
CAS
Google Scholar
Matson ML, Wilson LJ (2010) Nanotechnology and MRI contrast enhancement. Future Med Chem 2(3):491–502
Article
CAS
Google Scholar
McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251
Article
CAS
Google Scholar
Mittauer K, Paliwal B, Hill P, Bayouth JE, Geurts MW, Baschnagel AM et al (2018) A new era of image guidance with magnetic resonance-guided radiation therapy for abdominal and thoracic malignancies. Cureus 10(4):e2422
Google Scholar
Nakamura H, Jun F, Maeda H (2015) Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls. Expert Opin Drug Deliv 12(1):53–64
Article
CAS
Google Scholar
Naseri N, Ajorlou E, Asghari F, Pilehvar-Soltanahmadi Y (2018) An update on nanoparticle-based contrast agents in medical imaging. Artif Cells Nanomed Biotechnol 46(6):1111–1121
Article
CAS
Google Scholar
Nelson NR, Port JD, Pandey MK (2020) Use of superparamagnetic iron oxide nanoparticles (SPIONs) via multiple imaging modalities and modifications to reduce cytotoxicity: an educational review. J Nanotheranostics 1(1):105–135
Article
Google Scholar
Neuwelt A, Sidhu N, Hu C-AA, Mlady G, Eberhardt SC, Sillerud LO (2015) Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. Am J Roentgenol 204(3):W302–W313
Article
Google Scholar
Nguyen K-L, Yoshida T, Kathuria-Prakash N, Zaki IH, Varallyay CG, Semple SI et al (2019) Multicenter safety and practice for off-label diagnostic use of ferumoxytol in MRI. Radiology 293(3):554–564
Article
Google Scholar
Normandin MD, Yuan H, Wilks MQ, Chen HH, Kinsella JM, Cho H et al (2015) Heat-induced radiolabeling of nanoparticles for monocyte tracking by PET. Angew Chem Int Ed 54(44):13002–13006
Article
CAS
Google Scholar
Oghabian MA, Jeddi-Tehrani M, Zolfaghari A, Shamsipour F, Khoei S, Amanpour S (2011) Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI. J Nanosci Nanotechnol 11(6):5340–5344
Article
CAS
Google Scholar
Otazo R, Lambin P, Pignol J-P, Ladd ME, Schlemmer H-P, Baumann M et al (2021) MRI-guided radiation therapy: an emerging paradigm in adaptive radiation oncology. Radiology 298(2):248–260
Article
Google Scholar
Pasut G (2019) Grand challenges in nano-based drug delivery. Front Med Technol 1:1
Article
Google Scholar
Pearce AK, O’Reilly RK (2019) Insights into active targeting of nanoparticles in drug delivery: advances in clinical studies and design considerations for cancer nanomedicine. Bioconjug Chem 30(9):2300–2311
Article
CAS
Google Scholar
Pellico J, Gawne PJ, de Rosales RTM (2021) Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 50(5):3355–3423
Article
CAS
Google Scholar
Plissonneau M, Pansieri J, Heinrich-Balard L, Morfin J-F, Stransky-Heilkron N, Rivory P et al (2016) Gd-nanoparticles functionalization with specific peptides for ß-amyloid plaques targeting. J Nanobiotechnol 14(1):60
Article
Google Scholar
Pratt EC, Shaffer TM, Grimm J (2016) Nanoparticles and radiotracers: advances toward radionanomedicine. Wires Nanomed Nanobiotechnol 8(6):872–890
Article
CAS
Google Scholar
Rocchi P, Brichart-Vernos D, Lux F, Morfin I, David L, Rodriguez-Lafrasse C et al (2022) A new generation of ultrasmall nanoparticles inducing sensitization to irradiation and copper depletion to overcome radioresistant and invasive cancers. Pharmaceutics 14(4):814
Article
CAS
Google Scholar
Rudnick MR, Wahba IM, Leonberg-Yoo AK, Miskulin D, Litt HI (2021) Risks and options with gadolinium-based contrast agents in patients with CKD: a review. Am J Kidney Dis 77(4):517–528
Article
CAS
Google Scholar
Russell E, Dunne V, Russell B, Mohamud H, Ghita M, McMahon SJ et al (2021) Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells. Radiat Oncol 16(1):104
Article
CAS
Google Scholar
Salem A, Little RA, Latif A, Featherstone AK, Babur M, Peset I et al (2019) Oxygen-enhanced MRI is feasible, repeatable, and detects radiotherapy-induced change in hypoxia in xenograft models and in patients with non-small cell lung cancer. Clin Cancer Res 25(13):3818–3829
Article
CAS
Google Scholar
Sancey L, Kotb S, Truillet C, Appaix F, Marais A, Thomas E et al (2015) Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS Nano 9(3):2477–2488
Article
CAS
Google Scholar
Sanità G, Carrese B, Lamberti A (2020) Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Front Mol Biosci 7:587012. https://doi.org/10.3389/fmolb.2020.587012
Article
CAS
Google Scholar
Sarracanie M, LaPierre CD, Salameh N, Waddington DEJ, Witzel T, Rosen MS (2015) Low-cost high-performance MRI. Sci Rep 5(1):15177
Article
CAS
Google Scholar
Schuemann J, Bagley AF, Berbeco R, Bromma K, Butterworth KT, Byrne HL et al (2020) Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys Med Biol 65(21):21RM02
Article
CAS
Google Scholar
Shan L (2004) Superparamagnetic iron oxide nanoparticles (SPION) stabilized by alginate. Mol. Imaging Contrast Agent Database MICAD. Bethesda: National Center for Biotechnology Information (US). http://www.ncbi.nlm.nih.gov/books/NBK23636/. Accessed 18 July 2022
Shen Z, Wu A, Chen X (2017) Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm 14(5):1352–1364
Article
CAS
Google Scholar
Shi Y, van der Meel R, Chen X, Lammers T (2020) The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 10(17):7921–7924
Article
Google Scholar
Stein J (2022) Evaluation of hyperfine low field strength portable point-of-care magnetic resonance imaging system in patients receiving ferumoxytol infusions. clinicaltrials.gov. Report No. NCT04721262. https://clinicaltrials.gov/ct2/show/NCT04721262
Sterzing F, Engenhart-Cabillic R, Flentje M, Debus J (2011) Image-guided radiotherapy. Dtsch Ärztebl Int 108(16):274–280
Google Scholar
Tanimoto A, Kuribayashi S (2006) Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma. Eur J Radiol 58(2):200–216
Article
Google Scholar
Tassali N, Bianchi A, Lux F, Raffard G, Sanchez S, Tillement O et al (2016) MR imaging, targeting and characterization of pulmonary fibrosis using intra-tracheal administration of gadolinium-based nanoparticles. Contrast Media Mol Imaging 11(5):396–404
Article
CAS
Google Scholar
Thakare V, Tran V-L, Natuzzi M, Thomas E, Moreau M, Romieu A et al (2019) Functionalization of theranostic AGuIX® nanoparticles for PET/MRI/optical imaging. RSC Adv 9(43):24811–24815
Article
CAS
Google Scholar
Toth GB, Varallyay CG, Horvath A, Bashir MR, Choyke PL, Daldrup-Link HE et al (2017) Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int 92(1):47–66
Article
CAS
Google Scholar
Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H (2009) A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9(12):4434–4440
Article
CAS
Google Scholar
Truillet C, Thomas E, Lux F, Huynh LT, Tillement O, Evans MJ (2016) Synthesis and characterization of 89Zr-labeled ultrasmall nanoparticles. Mol Pharm 13(7):2596–2601
Article
CAS
Google Scholar
Tse BW-C, Cowin GJ, Soekmadji C, Jovanovic L, Vasireddy RS, Ling M-T et al (2015) PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine 10(3):375–386
Article
CAS
Google Scholar
University Hospital, Grenoble (2021) Radiotherapy of multiple brain metastases using AGuIX® gadolinium-chelated polysiloxane based nanoparticles: a prospective randomized phase II clinical trial. clinicaltrials.gov. Report No. NCT03818386. https://clinicaltrials.gov/ct2/show/NCT03818386
Unterweger H, Janko C, Schwarz M, Dézsi L, Urbanics R, Matuszak J et al (2017) Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging. Int J Nanomed 12:5223–5238
Article
CAS
Google Scholar
Uthaman S, Huh KM, Park I-K (2018) Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomater Res 22(1):22
Article
Google Scholar
Verkooijen HM, Henke LE (2021) Sensible introduction of MR-guided radiotherapy: a warm plea for the RCT. Front Oncol 11:652889
Article
Google Scholar
Verry C, Dufort S, Lemasson B, Grand S, Pietras J, Troprès I et al (2020) Targeting brain metastases with ultrasmall theranostic nanoparticles, a first-in-human trial from an MRI perspective. Sci Adv 6(29):eaay5279
Article
CAS
Google Scholar
Verry C, Dufort S, Villa J, Gavard M, Iriart C, Grand S et al (2021) Theranostic AGuIX nanoparticles as radiosensitizer: a phase I, dose-escalation study in patients with multiple brain metastases (NANO-RAD trial). Radiother Oncol 160:159–165
Article
CAS
Google Scholar
Vogl TJ, Hammerstingl R, Schwarz W, Mack MG, Müller PK, Pegios W et al (1996) Superparamagnetic iron oxide-enhanced versus gadolinium-enhanced MR imaging for differential diagnosis of focal liver lesions. Radiology 198(3):881–887
Article
CAS
Google Scholar
Waddington DEJ, Boele T, Maschmeyer R, Kuncic Z, Rosen MS (2020) High-sensitivity in vivo contrast for ultra-low field magnetic resonance imaging using superparamagnetic iron oxide nanoparticles. Sci Adv 6(29):eabb0998
Article
CAS
Google Scholar
Wang Y-XJ (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1(1):35–40
Google Scholar
Wang AZ (2015) EPR or no EPR? The billion-dollar question. Sci Transl Med 7(294):294ec112
Article
Google Scholar
Wang S, You Q, Wang J, Song Y, Cheng Y, Wang Y et al (2019) MSOT/CT/MR imaging-guided and hypoxia-maneuvered oxygen self-supply radiotherapy based on one-pot MnO2-mSiO2@Au nanoparticles. Nanoscale 11(13):6270–6284
Article
CAS
Google Scholar
Wei H, Bruns OT, Kaul MG, Hansen EC, Barch M, Wiśniowska A et al (2017) Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci 114(9):2325–2330
Article
CAS
Google Scholar
Weinreb JC, Rodby RA, Yee J, Wang CL, Fine D, McDonald RJ et al (2021) Use of intravenous gadolinium-based contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Radiology 298(1):28–35
Article
Google Scholar
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF et al (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1(5):1–12
Article
Google Scholar
Wu J (2021) The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J Pers Med 11(8):771
Article
Google Scholar
Wu C, Cai R, Zhao T, Wu L, Zhang L, Jin J et al (2020) Hyaluronic acid-functionalized gadolinium oxide nanoparticles for magnetic resonance imaging-guided radiotherapy of tumors. Nanoscale Res Lett 15(1):94
Article
CAS
Google Scholar
Yao Y, Li P, He J, Wang D, Hu J, Yang X (2021) Albumin-templated Bi2Se3–MnO2 nanocomposites with promoted catalase-like activity for enhanced radiotherapy of cancer. ACS Appl Mater Interfaces 13(24):28650–28661
Article
CAS
Google Scholar
Yen C, Abbasi AZ, He C, Amini MA, Lip H, Rauth M et al (2021) Abstract PO-100: Theragnostic tumor-targeted manganese dioxide-loaded polymer-lipid nanoparticles for magnetic resonance image-guided radiation therapy. Clin Cancer Res 27(8_Supplement):PO-100
Article
Google Scholar
Yin X, Russek SE, Zabow G, Sun F, Mohapatra J, Keenan KE et al (2018) Large T1 contrast enhancement using superparamagnetic nanoparticles in ultra-low field MRI. Sci Rep 8(1):11863
Article
Google Scholar
Yoo M-K, Park I-K, Lim H-T, Lee S-J, Jiang H-L, Kim Y-K et al (2012) Folate-PEG-superparamagnetic iron oxide nanoparticles for lung cancer imaging. Acta Biomater 8(8):3005–3013
Article
CAS
Google Scholar