Amendola V, Meneghetti M. Size evaluation of gold nanoparticles by uv–vis spectroscopy. J Phys Chem C. 2009;113:4277–85.
Article
Google Scholar
Bajaj A, Miranda OR, Kim I-B, Phillips RL, Jerry DJ, Bunz UH, Rotello VM. Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays. Proc Natl Acad Sci. 2009;106:10912–6.
Article
Google Scholar
Butterworth K, Coulter J, Jain S, Forker J, McMahon S, Schettino G, Prise K, Currell F, Hirst D. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology. 2010;21:295101.
Article
Google Scholar
Carter JD, Cheng NN, Qu Y, Suarez GD, Guo T. Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem B. 2007;111:11622–5.
Article
Google Scholar
Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–8.
Article
Google Scholar
Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, Hill RP, Jaffray DA. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res. 2010;173:719–28.
Article
Google Scholar
Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1:325–7.
Article
Google Scholar
Crawford S. Is it time for a new paradigm for systemic cancer treatment? Lesions from a century of cancer chemotherapy. Front Pharmacol. 2013;4:1–18.
Article
Google Scholar
Cui L, Tse K, Zahedi P, Harding SM, Zafarana G, Jaffray DA, Bristow RG, Allen C. Hypoxia and cellular localization influence the radiosensitizing effect of gold nanoparticles (AuNPs) in breast cancer cells. Radiat Res. 2014;182:475–88.
Article
Google Scholar
Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer. 2017;8(16):3131–3141.
Article
Google Scholar
Fratoddi I, Venditti I, Cametti C, Russo MV. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015;8:1771–99.
Article
Google Scholar
Frens G. Controlled nucleation for the particle size in monodisperse gold suspensions. Nature. 1973;241:20–2.
Google Scholar
Gal N, Massalha S, Samuelly-Nafta O, Weihs D. Effects of particle uptake, encapsulation, and localization in cancer cells on intracellular applications. Med Eng Phys. 2015;37:478–83.
Article
Google Scholar
Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA. 2005;102:9469–74.
Article
Google Scholar
Geng F, Song K, Xing JZ, Yuan C, Yan S, Yang Q, Chen J, Kong B. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology. 2011;22:285101.
Article
Google Scholar
Georgelin T, Bombard S, Siaugue JM, Cabuil V. Nanoparticle-mediated delivery of bleomycin. Angew Chem Int Ed. 2010;49:8897–901.
Article
Google Scholar
Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49:N309.
Article
Google Scholar
Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79:248–53.
Article
Google Scholar
Haiss W, Thanh NT, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from uv–vis spectra. Anal Chem. 2007;79:4215–21.
Article
Google Scholar
Haume KEA. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol. 2016;7:1–20.
Article
Google Scholar
Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV, Prise KM, Golding J, Mason NJ. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol. 2016;7:8.
Article
Google Scholar
Hecht SM. The chemistry of activated bleomycin. Acc Chem Res. 1986;19:383–91.
Article
Google Scholar
Hermanson GT. Preparation of colloidal-gold-labeled proteins, in bioconjugate techniques. New York: Academic press; 1996. p. 593–605.
Google Scholar
Herscher LL, Cook JA, Pacelli R, Pass H, Russo A, Mitchell J. Principles of chemoradiation: theoretical and practical considerations. Oncology (Williston Park, NY). 1999;13:11–22.
Google Scholar
Hill RPB, Robert B. The scientific basis of radiotherapy. In: Tannock IFH, Richard P, Bristrow RG, Harrington L, editors. The basic science of oncology. Toronto: McGraw-Hill; 2008. p. 289–321.
Google Scholar
Jain PK, Lee KS, El-Sayed I, El-Sayed M. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110:7238–48.
Article
Google Scholar
Jain S, Coulter JA, Hounsell AR, Butterworth KT, McMahon SJ, Hyland WB, Muir MF, Dickson GR, Prise KM, Currell FJ. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys. 2011;79:531–9.
Article
Google Scholar
Jain S, Coulter JA, Butterworth KT, Hounsell AR, McMahon SJ, Hyland WB, Muir MF, Dickson GR, Prise KM, Currell FJ. Gold nanoparticle cellular uptake, toxicity and radio sensitisation in hypoxic conditions. Radiother Oncol. 2014;110:342–7.
Article
Google Scholar
Jelveh S, Chithrani DB. Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers. 2011;3:1081–110.
Article
Google Scholar
Liu C-J, Wang C-H, Chien C-C, Yang T-Y, Chen S-T, Leng W-H, Lee C-F, Lee K-H, Hwu Y, Lee Y-C. Enhanced X-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotechnology. 2008;19:295104.
Article
Google Scholar
Ma BB, Bristow RG, Kim J, Siu LL. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents. J Clin Oncol. 2003;21:2760–76.
Article
Google Scholar
McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, Schettino G, Dickson GR, Hounsell AR, O’Sullivan JM. Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother Oncol. 2011;100:412–6.
Article
Google Scholar
Naik S, Patel D, Chuttani K, Mishra AK, Misra A. In vitro mechanistic study of cell death and in vivo performance evaluation of rgd grafted pegylated docetaxel liposomes in breast cancer. Nanomed Nanotechnol Biol Med. 2012;8:951–62.
Article
Google Scholar
Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9:1909–15.
Article
Google Scholar
Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, Davidson R, Geso M. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol Biol Med. 2009;5:136–42.
Article
Google Scholar
Rubin P, Carter SK. Combination radiation therapy and chemotherapy: a logical basis for their clinical use. CA Cancer J Clin. 1976;26:274–92.
Article
Google Scholar
Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: Rgd and integrins. Science. 1987;238:491–8.
Article
Google Scholar
Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21:10644–54.
Article
Google Scholar
Siu LLM, Malcolm J. Pharmacology of anticancer drugs. In: Tannock IFH, Richard P, Bristrow RG, Harrington L, editors. The basic science oncology. Toronto: McGraw-Hill; 2005. p. 322–48.
Google Scholar
Stewart BWKP, Wild CP. World cancer report. 2014.
Umezawa Y, Morishima H, Saito S, Takita T, Umezawa H, Kobayashi S, Otsuka M, Narita M, Ohno M. Synthesis of the pyrimidine moiety of bleomycin. J Am Chem Soc. 1980;102:6630–1.
Article
Google Scholar
Vloedgraven H, Papapoulos S, Löwick C, Grzesik W, Kerr J, Robey P. Attachment characteristics and involvement of integrins in adhesion of breast cancer cell lines to extracellular bone matrix components. Lab Invest. 1997;77:665–75.
Google Scholar
Wang F, Li Y, Shen Y, Wang A, Wang S, Xie T. The functions and applications of rgd in tumor therapy and tissue engineering. Int J Mol Sci. 2013a;14:13447–62.
Article
Google Scholar
Wang C, Li X, Wang Y, Liu Z, Fu L, Hu L. Enhancement of radiation effect and increase of apoptosis in lung cancer cells by thio-glucose-bound gold nanoparticles at megavoltage radiation energies. J Nanopart Res. 2013b;15:1642.
Article
Google Scholar
Wang C, Jiang Y, Li X, Hu L. Thioglucose-bound gold nanoparticles increase the radiosensitivity of a triple-negative breast cancer cell line (mda-mb-231). Breast Cancer. 2015;22:413–20.
Article
Google Scholar
Xu Q, Liu Y, Su S, Li W, Chen C, Wu Y. Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic rgd and transferrin conjugated hyperbranched copolymer nanoparticles. Biomaterials. 2012;33:1627–39.
Article
Google Scholar
Yang C, Uertz J, Yohan D, Chithrani B. Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention. Nanoscale. 2014;6:12026–33.
Article
Google Scholar
Yang C, Uertz J, Chithrani DB. Colloidal gold-mediated delivery of bleomycin for improved outcome in chemotherapy. Nanomaterials. 2016;6:48.
Article
Google Scholar
Yohan D, Chithrani BD. Applications of nanoparticles in nanomedicine. J Biomed Nanotechnol. 2014;10:2371–92.
Article
Google Scholar
Yohan D, Cruje C, Lu X, Chithrani D. Elucidating the uptake and distribution of nanoparticles in solid tumors via a multilayered cell culture model. Nano-Micro Lett. 2015;7:127–37.
Article
Google Scholar
Zhang Y-F, Wang J-C, Bian D-Y, Zhang X, Zhang Q. Targeted delivery of rgd-modified liposomes encapsulating both combretastatin a-4 and doxorubicin for tumor therapy: in vitro and in vivo studies. Eur J Pharm Biopharm. 2010;74:467–73.
Article
Google Scholar
Zhang L, Zhu S, Qian L, Pei Y, Qiu Y, Jiang Y. Rgd-modified peg–pamam–dox conjugates: in vitro and in vivo studies for glioma. Eur J Pharm Biopharm. 2011;79:232–40.
Article
Google Scholar